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Econometrica, Vol. 57, No. 1, (January, 1989), 41-80

OPTIMAL PRICE DYNAMICS AND SPECULATION WITH A
STORABLE GOOD

By ROLAND BENABOU!

This paper analyzes as a dynamic game the optimal price and storage strategies of,
respectively: (a) the seller of a storable good, who must keep pace with inflation but incurs
a cost to changing his price; (b) his customers, who speculate on the timing of price
adjustments to buy and store just before. A unique (Markov) perfect equilibrium is shown
to exist, and is fully characterized. It generally involves a phase of mixed strategies, during
which the seller tries to deter speculation by injecting uncertainty into its price dynamics,
while speculators store in increasing numbers, with possibly a final “run” on the good. The
stochastic price policies of a large number of such firms are shown to aggregate back to a
price index growing at the rate of general inflation in response to which they arose. The
model thus establishes that: (a) a constant rate of aggregate inflation can at the same time
generate and cover up significant uncertainty and social costs at the microeconomic level;
(b) speculation can be destabilizing and socially wasteful, even in the absence of shocks
and imperfect information. Most importantly, they provide a theoretical foundation for the
frequently encountered claim that inflation causes price uncertainty.

KEeYwoRDs: Inflation, speculation, price uncertainty, dynamic game.

INTRODUCTION

“Soon, nobody knew how much things cost any more. Prices were jumping up in a
completely arbitrary manner; a box of matches cost, in a shop which had increased its
prices at the right moment, twenty times as much as in another one, where a decent fellow
was still selling his merchandise at the previous day’s price. As a reward for his honesty, his
shop was emptied within an hour, because the word was passed on, everyone rushed and
bought what was for sale, whether they needed it or not” (Zweig (1943)).

THIS ACCOUNT OF THE Austrian hyperinflation of 1921-1922 dramatically illus-
trates two important aspects of inflationary economies: sellers face a crucial and
repeated problem of when to adjust their prices, while buyers speculate on the
timing of these increases to go on a buying-for-storage spree just before. Less
extreme situations, such as oil shocks, the removal of subsidies, or even steady
but high enough inflation also provide ample evidence that most goods can, and
indeed will be stored if buyers expect their price to go up significantly (or
shortages).?

The quctation also confirms that most prices are adjusted at discrete intervals
and not continuously; Mussa (1981) found similarly that the frequency of price
increases for selected commodities during the 1923 German hyperinflation was,
in a sense, small in comparison to the speed of inflation. Indeed, changing prices
entails some costs: new information must be gathered and disseminated, price

! This paper is a revised and abridged version of Chapter One from my 1986 Ph.D Dissertation at
M.LT. I am most grateful to Jean Tirole for many discussions on this subject, as well as to Olivier
Blanchard, Rose-Anne Dana, Peter Diamond, Oliver Hart, Eric Maskin, and Stan Fischer for helpful
comments. I remain responsible for all errors and inaccuracies.

2 Goods which are not storable but for which intertemporal substitution of consumption is possible
give rise to similar behavior.
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42 ROLAND BENABOU

tags, lists and catalogues updated, contracts and collusive agreements renegoti-
ated, etc.; price changes may also trigger search by customers.

The optimal price policy for a monopolistic seller of a nonstorable good who
faces a fixed cost of changing his price was characterized by Barro (1972) when
the price must adapt to demand shocks, and by Sheshinski and Weiss (1977),
(1979), (1983) when it must keep pace with environing inflation. The solution was
shown to be an (S, s) rule, according to which (in the latter case) the real price is
readjusted to some ceiling level S every time inflation has eroded it below some
floor level s; with constant inflation, such adjustments occur with fixed periodic-
ity. But storability endows the price adjustment problem with a new, speculative
dimension, which generally renders such deterministic price policies suboptimal:
if consumers knew that their supermarket or gas station adjusted its prices every
Friday morning, they would store the day before, thereby depriving the seller of
his sales at the peak and increasing them at the lowest point of the real price
cycle. This prospect would in turn give him an incentive to advance the price
increase to Thursday morning; buyers would then try to store on Wednesday
instead, etc.

This paper solves the problem of the optimal price and storage strategies for a
firm selling a storable good and its customers as the Markov perfect equilibrium
of a dynamic game with infinite horizon. It shows in particular that the firm may
find it profitable to inject randomness into its price dynamics, while, as time goes
by before the price adjustment occurs, buyers store in increasing numbers, with
possibly a final “run” on the good. The first result provides a theoretical
foundation for the often-mentioned link between inflation and price uncertainty,
and the second an accurate description of buyer behavior in inflationary situa-
tions, as well as a proof that speculation may be destabilizing, even in a context
of perfect information.

The model and equilibrium conditions are presented in Section 1. Section 2
fully characterizes the possible types of equilibria, while Section 3 establishes
existence and uniqueness. Section 4 relates the equilibrium to the no-storage case,
and assesses the effects of inflation on price-storage dynamics, as well as welfare.
Finally, Section 5 examines the cross-sectional distribution and aggregate price
index of a large number of firms, and draws macroeconomic consequences from
the results. Most proofs are gathered in appendices at the end of the paper. The
main results are illustrated on Figures 1 to 4, in Section 2.4.

1. MODEL AND PRELIMINARY RESULTS
1.1. Description of the Market
THE FIRM: A monopolistic firm, selling a storable good® which lasts for two

periods, faces an inflationary environment: its costs and all aggregate prices

? Unlike durable goods, which are not themselves consumed but yield a flow of services over time,
storable goods disappear after consumption.
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increase at a constant rate of # per period. With all nominal prices deflated by
the aggregate price index, the firm operates with constant real costs, which are: a
production cost of ¢ per unit and a fixed cost of changing prices (so-called
“menu cost”) of B.* The firm is risk-neutral, infinitely-lived and maximizes in
each period the expected present value (e.p.v.) of its profits, with a discount
factor § < 1.

BUYERS: A unit continuum of infinitely lived, risk-neutral buyers (consumers,
retailers, or other industries) maximize in each period the expected present value
of their instantaneous utilities, with the same discount factor § as the firm. Each
of them requires one unit of the good per period, provided the real price is below
a common reservation value S>c.’ In every period, buyers consume any
previous inventories, then buy from the firm to satisfy their current needs (if
inventories are nonexistent or insufficient) as well as for storage until the next
period, if they so desire. Storage is costly because of foregone interest on the
value of goods stored, and of a constant real storage cost per unit.

The market’s potential for speculation will be parameterized as follows: a
fraction 1 —x (0 <x <1) of buyers (hereafter referred to as speculators, or
speculating customers) can store at a cost a <4S, while the remaining x
(nonspeculators) face a storage cost a’ > 8S, which renders storage always
unprofitable. Because the good is storable for one period only and consumers are
satisfied with one unit (and assuming that transactions costs prohibit resales
among different types) they never want to store more than one unit each; total
storage is thus bounded by 1 — x.°

1.2. The Game Between Firm and Customers

TIMING OF MOVES: In every period, the firm decides whether to change its
nominal price or let the previous one be eroded by inflation, then buyers make
their purchasing and storage decisions; in the following period, the firm, having
observed inventories, makes a new price decision; buyers then come back, etc.’
This sequential timing and the continuum assumption on buyers correspond to
what Gale (1982) terms a “repeated leader-follower” game. As mentioned previ-
ously, pure strategies will generally not be optimal; more likely, the firm will
adjust its price at random intervals (or by random amounts) to deter speculation,

* Indexed contracts may arise when the firm sells to a few large customers, but are too costly to
draw and enforce with many small buyers.

Buyers have instantaneous utility U(z, y) =y + S - min(z,1), where z is consumption of the
firm’s good and y real income spent on others; their real income in each period is /> S. Their
instantaneous indirect utility function (in the absence of storage) is thus W(P, I') = I + max(S — P,0).

$One could also interpret 1 — x as the total storage capacity of pure competitive speculators
operating in a market where consumers cannot store themselves (e.g. Hart-Kreps (1986)); or
alternatively, x as a flow of transient customers, renewed every period, or as the fraction of customers
which the firm succeeds in rationing when they try to store. Finally, note that, because of risk-neutral-
ity, there is no role for a future’s market.

Because individual buyers act nonstrategically, it makes in fact no difference whether the firm has
observed previous storage when it sets the new price (alternating moves) or not (simultaneous moves).
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while only a fraction of speculators will store (one unit each) in every period.®

ADJUSTMENT LEVEL: The most general strategy for the firm in each period is
a probability distribution over R, X{0,1}, ie. real prices and the action of
closing down—which brings the game to an end when future expected profits are
negative. Bénabou (1986) treats the game in this general form, and shows that, as
long as the cost of price adjustment is smaller than the maximum revenue from
nonspeculating customers (x(.S — c¢) > B), attention can be restricted to a simpler
game, where in every period the firm only decides between adjusting its real price
back to the reservation level S and not adjusting it.° For brevity, only the
simplified version of the game is presented here, under the following assumption:

ASSUMPTION A: x(S—c¢)>B.

1.3. Strategies and Equilibrium Concept

Attention will be restricted to (stationary) Markov, or state-space, strategies,
which, for each player, depend only on payoff relevant state variables, i.e. on
those which directly affect the current and future flow payoffs from his decision.!°
The equilibrium concept is thus that of Markov perfect equilibrium (in short,
MPE; cf. Maskin and Tirole (1987), (1988a), (1988b), Gertner (1986)). The first
reason for this choice is to reduce the plethoric equilibrium set (folk theorem, e.g.
Friedman (1987)) which arises when all history-dependent strategies are allowed.!!
The second one is a concern for robustness: because players react only to
variables which constitute a physical intertemporal link in the game, MPE are
more robust, both to renegotiation among players and to the specification of a
finite or infinite horizon, than supergame-type equilibria based on threats of
punishment for “immaterial” past behavior.!?

8 For an interpretation and formal justification of a mixed strategy equilibrium in a game of
perfect information as the limit of pure strategy equilibria in the same game perturbed by an
infinitesimal amount of incomplete information, cf. Harsanyi (1973) and Milgrom and Weber (1986).

Because of the simplifying assumption made on preferences, the firm might want to “overshoot”
to S(1 +7), so as to dry up inventories and force all buyers to buy at S in the next period. The
presence of enough nonspeculators (x(S — ¢) > B) whose purchases would be lost for one period
makes this (implausible) strategy less profitable than adjusting to S directly (cf. Bénabou (1986)).
Under this condition, the unique (Markov perfect) equilibrium of the simplified game is also an
equilibrium of the general one; it is the only (Markov perfect) equilibrium when a = ¢ = 0, and always
the only one involving adjustment to a constant level; if other equilibria of the larger game exist, they
must involve adjustments to (variable) real prices S’ €[S, S/(1 + 7)).

If time itself is not payoff-relevant (as will be the case here), the state-space assumption implies
stationarity of the strategies. Formally, a state variable z is payoff relevant for player j, whose action
set, decision variable, and instantaneous payoff are Y,y€Y, and G/(y, y_ ;3 2), if either Y,
depends on z, or for some (yy, 5 ,), Ji, # ¥, the function: [z = G'(yy,, y_j; 2) = G'(),, y-,: 2)]
is not constant. In the differentiable case, this takes the form: 92G'/d y,0z#0.

"' A MPE is still a subgame perfect equilibrium when arbitrary history-dependent strategies are
allowed; it is simply one where all players disregard payoff irrelevant variables (cf. Maskin and Tirole
(1988a)).

2 1n a context of perfect information, and no multiple Nash equilibria in the single-period game.
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In period n, denote by P(n)< S the real price, and by ¢/(n) and ¢'(n)=
(f3g/(n) di)/(1 — x) respectively the quantities stored by customer i and by
speculators on average. Buyer i’s payoff (already embodying the trivial resolution
of his optimal consumption decision) is:

1) Gi(n) =8-P(n)(1-g/(n=1)) - ¢/(n)(P(n) +a).

The first two terms represent current utility and the last one the cost of storing
one unit. The only state variable which is payoff-relevant for the choice of g/(n)
is therefore P(n). In particular, previously accumulated inventories g/(n — 1) are
not payoff-relevant for the storage decision (although they are for the decision of

how much to buy for current consumption). In the following period, the firm’s
payoff is:
) Gr(n+1)=(P(n+1)=c)[1+ (1 -x)(¢'(n+1) - g'(n))]
~BA(P(n)/8, P(n+1)),

where =1+ and A(y, z)=0if y =z, and 1 otherwise. This periods’ storage
(1 —x)q’(n + 1) adds to sales, while last period’s (1 — x)gq’(n) subtracts from
them. The only payoff-relevant state variables for the choice between P(n + 1) = S
(adjustment) and P(n + 1) = P(n)/6 (no adjustment) are thus P(n) (because of
the adjustment cost) and ¢’(n) (inventories to be consumed at the expense of new
sales). Markov strategies for this game are therefore defined as follows: 3

For customer i: a mapping ¢/: P€]0,S]— ¢/(P)< (0,1}, specifying his
storage decision as a function of the current real price.

For the firm: a mapping ¢: (P, q’) €[0, S] X[0,1] > ¢(P,q") €]0,1], specify-
ing the probability with which the real price is adjusted (to S) as a function of its
previous value and speculator’s average inventory level g’.

1.4. Dynamic Programming Problems

Assume that an equilibrium exists, and denote by #3(P,q/) (resp.
¥3(P, q’, q/)) the maximized e.p.v. of customer i’s utility when he and the other
buyers are (resp. when the firm is) about to play, so that P represents the current
(resp. previous) period’s real price, and (g/, q’) the current inventory levels of
customer i and of the average speculator. The functional equations associated to
customer i’s dynamic programming problem are, by (1):

(3a)  #5(P,q/)=S-P(1-¢q/)
+ Max {—q/(P+a)+875(P,¢(P),q)},
g9/ €{0,1}
(36)  Yu(P.q',q!)=¢(P.q") - #5(S, /) + (1= ¢(P,q))- #5(P/8,q})
for all (P, q’, q/). Note that customer i takes both #'(P) and ¢(P,q’) as given.
Define §(P)=g(P,¢'(P)) for all P. Customer i’s value function (at his

13 Attention could even be restricted to P € {S0~¥|k € N); keeping P €0, S] and dealing with
functions instead of sequences is more convenient and allows the game to be solved for any initial
price P < S.



46 ROLAND BENABOU

decision nodes) #7 is therefore a solution to the Bellman equation:
(3¢) ¥5(P,q/)= Max {S_P(l_qi’)_qi"(P"'a)

9”€{0,1}
+8[5(P) - #3(S,97) + (1-§(P))

W5(P/8,4")])
for all (P, g/), and his strategy ¢; is an associated optimal control.

Similarly, let # (P, q’) (resp. (P, q’)) denote the maximized e.p.v. of the
firm’s profits when it is (resp. when buyers are) about to play, so that P
represents the previous (resp. current) period’s real price, and ¢’ speculators’
average current inventories. The functional equations associated to the firm’s

dynamic programming problem are, by (2):
(42)  #r(P.g)= Max (q(¥;(5.4) = B) + (1~ ) V2(P/0. ).
(4b)  V(P,q)=(P-c)[1+ (A -x)(¢'(P) = q)] +¥%7:(P, ¢'(P))

for all (P, ¢’). The firm’s value function (at its decision nodes) #7 is therefore a
solution to the Bellman equation:

(4c)  #%(P,q)
= Max {g[-B+(S-c)1+ A -x)(#(S)-q))

q<(0,1]
+8%75(S, ¢/(8))]
+(1-q)[(P/0-c)Q+(1—x)(g'(P/6)-q'))
+8%(P/0,4(P/0))]}

for all (P, q’), and its strategy ¢ is an associated optimal control.

1.5. Normalizations

The quantity state variables ¢’ and g/ will now be eliminated by a convenient
normalization. By (3a) and (4b):
(%) Wy(P,q!) =W3(P,0)+ Pgq/,
(6) Ve(P,q')=75(P,0) - (P—c)(1-x)q’
for all (P, q’, q/). Define therefore the normalized value functions for a represen-
tative customer and for the firm as:
(M #(P)=#5(P,0),
(8) 7 (P)=9%(P,0).
Both normalized value functions are measured from a decision node of buyers at
which all have zero inventories. By (3a)—(3b), #~ satisfies:

9) #(P)= Max {S—P—q/(P+a)
9”€{0,1}

+85(P)-[#°(S) +4/'S] +8(1-4(P))
[#w(P/8)+q".P/0]}
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which differs from (3c) by a constant only, and is therefore an equivalent way of
defining speculator i’s dynamic programming problem and determining his
optimal strategy ¢/. Similarly, by (4a)-(4b), ¥~ satisfies:

(10)  #(P)= Max (P=)[1+(1-x)7(P)]

+g8[7(S) - B-(S—c)(1—-x)g'(P)]
+(1—¢)8[»(P/8)— (P/8~c)(1-x)g'(P)]},

and the corresponding set of optimal controls coincides with the set of optimal
firm strategies g(P)=g¢(P, ¢'(P)) on the equilibrium path (where ¢’ is always
equal to ¢'(P)). Conversely, a function ¥~ solution to (10) is sufficient to
completely define the firm’s strategy and value off the equilibrium path as well.
Define for all (P, q’): ¥x(P,0)=¥"(P), ¥=(P, q’) asin (6), and # (P, q’) as in
(4a); it is easily verified that (10) implies that %7 is a solution to (4c), the
Bellman equation for the firm’s original dynamic programming problem. More-
over, if ¢’ = ¢'(P), the right-hand sides of this equation and of (10) coincide (by
construction); an optimal control [P — g(P)] associated to ¥~ in (10) can
therefore be extended into an optimal [(P, ¢") = ¢(P, q’)] associated to #7 in
(4c), with ¢(P, ¢'(P)) = g(P) for all P.

To summarize, attention can (and will henceforth) be restricted without loss of
generality to normalized values functions and strategies defined over a single state
variable:

DEerINITION 1.1:  For any ¢ € R, the market is said to be in state ¢ if the real
price charged by the firm is P,= S(1+ ) ‘= S0~*. Correspondingly, define:
V,= ¥ (P),q,= ¢(Pn ¢'(P)), p=P,—c for the firm, and: W,=W%(P,),q}=
#/(P,), q/ = ¢'(P,) for buyers.

If no adjustment takes place, a transition occurs to state ¢+ 1; after each
adjustment, the game is back in state 0 and starts a new “cycle.” On the
equilibrium path, ¢z will thus be the number of periods elapsed since the real price
was last adjusted to S. The set of functions mapping R, into [0,1] will be
denoted by #. To minimize the new notation, ¥",#", ¢, ¢/ and ¢’ will now
denote the elements of F: ¥": t >V, W: t> W, ¢: t—>q, ¢/: t—4q], ¢"
t—q/. For all y € R, Int[ y] will denote its integer part, and K[y]= —Int[—y]
=min{k E€N|k>y}.

The (normalized) Bellman equation (9) for a buyer’s problem becomes:

1) W= max {S—P-q/(P+a)+8[q W+ qiP)

+(1 - qt)(VVt+1 + qi’PI+1)] }

If the firm raises (resp. does not raise) its price in the next period, buyer i will
obtain a value equal to W}, (resp. W,, ) plus savings of P, (resp. P,,,) if he had
stored.
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Similarly, the (normalized) Bellman equation (10) for the firm’s problem
becomes:

(12)  ¥= max{p,(1+(1—x)q,)+8[q(% B—(1-x)q/p,)

+(1-¢) (Vo1 — (1 - 2)g/pan)] ).
The firm randomizes between states zero and ¢+ 1, which yield values respec-
tively equal to ¥, — B8 and V,,,, minus the profits at the new price (resp. P, or
P,.,) on the sales (1 — x)q, lost because of storage.

The operators on % associating to any functions %": t—» W, and ¥": t > V,
the right-hand sides of (11) and (12) respectively, trivially verify Blackwell’s
(1965) sufficient conditions (monotonicity and discounting) guaranteeing that
they are contractions. Therefore, for any g€ %, (11) has a unique solution
WeF, and a nonempty set of optimal controls denoted %£'(¢); by linearity,
¢! € R'(¢) for almost all i €[0,1] if and only if ¢’ = [J¢/ di € #'(¢). Similarly,
for any ¢’ €%, (12) has a unique solution ¥~ and a nonempty set of optimal
controls denoted #(¢'). A MPE is a fixed point of the correspondence on
FXF:

(g,9") > R(g) X R ().
Usual existence theorems are not applicable to this problem. The proof of

existence is therefore constructive, and also gives uniqueness and a full character-
ization of the equilibrium; it proceeds in two stages.

1.6. Equilibrium and Continuation Value Equilibrium

In the first stage (Section 2), the endogenous value ¥, appearing in the right
hand side of (12) is treated as a parameter V' € R . This amounts to replacing the
original game by one which terminates as soon as the firm adjusts its real price, at
which time it receives an exogenous continuation value ¥, but must buy back all
inventories at the real price S. The Bellman equation (12) for the firm’s problem
then becomes:

(12) V-qmax {p,(l+(l x)q,)+8[q(V B- (l—x)q,po)

+(1- q)(V;+1 -(1- x)qt,pt+l)]}'
Blackwell’s theorem also applies to (12'), which therefore has a unique solution
and a nonempty set of optimal controls, for any ¢’ €% . But in contrast to the
original game which is cyclical, the continuation value game can be shown to end
within an (endogenous) horizon T(V') < + co. It can then be solved from T'(V)
backwards, establishing the existence for every V of a unique (Markov) continua-
tion value equilibrium (¢, 41, V'), which can be fully characterized.

DEerFINITION 1.2: A (Markov) continuation value equilibrium (CVE) is a
triplet (g, ¢, V) EFXFXR, such that (g, ¢) are optimal controls in the
Bellman equations (11) and (12’) respectively.
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In the second stage of the construction (Section 3), equilibria of the original
game are derived as fixed points. In a CVE (g, ¢/,, V), the firm’s ep.v. of
profits in state zero, i.e. ¥, can be computed recursively from (12’) as a function
f(V). The CVE is an equilibrium of the full game if and only if (12') coincides
with the original (12), i.e. if V= V,=f(V).

The idea thus consists in replacing an infinite-horizon game by a parametrized
family of finite horizon ones, and a fixed-point problem in the functional space
FXF byoneinR,.

The remainder of this section, and Section 2, therefore deal not only with MPE
but more generally with CVE. The necessary and sufficient conditions for the
linear maximization problems (11) and (12’) are:

Buyers:

if P+ a>8(qPy+(1-q)P,,), theng,=0(Vi),or: g/=0;
if Pr+a<8(th0+(1_qr)Pt+1)’ then g/, =1 (V i),OI‘: g9/ =1;
or: g/€[0,1].

(13)

Speculators simply compare the cost of buying and storing an extra unit with
the discounted value of the price expected to prevail in the following period. In
case of equality, each of them is indifferent between storing and not storing, so
any proportion may decide to do so.

Firm:

if ql/(l _x)(PO_PhH) < V_’.B_ I/;+1’ then q:= 1;
(14) if g/(1—x)(Po—Pis1) >V~ B~ V,,, then g,= 0;
if qtl(l _x)(Po_PzH) = V_B - I/t+l’ then q9. € [0’1]-

The firm thus compares the net valuations ¥ — 8 — (1 — x)q/p, and V,,, —
(1 = x)g/p,,, corresponding to the two possible transition states; or equivalently,
the increment in normalized valuation ¥ — 8 — ¥, resulting from adjustment
with the corresponding increment in expected lost revenues ( p, is lost rather than
Pr+1> ON g/(1 — x) customers). In case of equality, it is indifferent and can
randomize its decision.

1.7. Critical States for Deterministic Price Adjustments

Two critical states which play an important role in buyers’ and the firm’s
equilibrium strategies will now be introduced; they arise naturally when one
examines under which conditions a deterministic price adjustment—defined as a
jump: ¢,_,=0and g,=1 (g_, = 0)—is or is not possible.

Let g,=1; the condition required by (13) for buyers’ indifference in state ¢
becomes: P,+ a =98P or 6~'=8—a/S. Since a <88, define:

log[1/(8 — a/S)]
()
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When faced with a sure price adjustment in the following period, all specula-
tors store if ¢ > 7, none do if ¢ <, and they are indifferent if ¢ = 7. Indeed, only
after the real price has fallen below P, do the savings realized by storing justify
the necessary costs. For the x customers with storage cost ' > §S (nonspecula-
tors), speculation is never profitable (7’ = + c0); if x =1, the game thus reduces
to the optimization by the firm of the frequency of price adjustments (Sheshinski
and Weiss (1977)).

Let now ¢,=1 for ¢t>r1, so g/=1, inflicting on the firm a sure loss of
(1 = x)(8py — p,)- If it is too large, the firm will try to avoid reaching state ¢ by
implementing the price increase earlier with positive probability (g,_; > 0, if
t > 1), thereby precluding a deterministic adjustment in state . Since 8p,— p,
increases with 7, intuition suggests the existence of a critical state p such that
deterministic price adjustments with storage by all speculators cannot be optimal
for the firm in states ¢ > p. The following theorem indeed establishes that:

log[(1-2/8)/(1-2)] 1
p= where z =

log (6) ’ 2-x)°

(16)

THEOREM 1: There exists 1(a/S,8,7)>0 and p(x, 7)< (0,1/(1 — x)) such
that, in any continuation value equilibrium: (i) For all t <7, q/ =0. (ii) For all
t>, if =1 then q/=1. (iii) For all t>1, if t>max(r,p) and q,=1 then
q,-1>0.(iv) d7/3a>0; d7/38<0; d7/dn<0; du/dx>0; dp/dn <O.

Proor: Cf. Appendix 1.

The most important result is that there can be no deterministic price adjust-
ment in a state ¢ > max(7, ). Both 7 and p are independent of the continuation
value game played, i.e. of V. The generic conditions ¢ N and p &N, or
int[7] <7 and int[p] < g, will be assumed from here on.

2. CHARACTERIZATION OF THE EQUILIBRIUM

The existence of a unique CVE for any continuation value ¥ in an appropriate
interval will now be established. A CVE, and in particular any full equilibrium of
the game, is shown to generally consist of three phases, separated by thresholds T
and T: pure strategies during [0, 7'), then mixed during [T, T'), then again pure
strategies during [T, + o).

The construction proceeds in three steps. First, the phases of pure strategies
are examined; it is shown that there exist 7* and T such that q,=0 for
t <min(T*, 7 — 1) and ¢,=1 for ¢ > T. The intermediate phase of mixed strate-
gies is then analyzed; ¢, is shown to be a computable function Q, of the state ¢,
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derived from (13), while g/ is obtained as the solution Q; , to a linear difference
equation with variable (state-dependent) coefficients, derived from (14) and (12').
Finally, this system is solved backwards from T to determine T < T*.

2.1. The Phases of Pure Strategies

Assume first that buyers never store. The opportunity cost of postponing the
price adjustment for one period is then (1 — 8)(V — B), while the gain from that
postponement is next period’s net real revenue p,, ;. The firm therefore adjusts its
price, with probability one, in the state 7* such that these two quantities are
equal;'* it thus follows an (S, s) rule, with s — ¢ = pp,; = (1 — 8}V — B) (as in
Sheshinski and Weiss (1977)). Similarly, if the 1 — x speculators always store, the
optimal policy is an (S, s) rule, with s —c equated to the opportunity cost
(1 =8)(V—=B—-(@1Q—x)p,)

DerFINITION 2.1: Let I'=[(p,— 8B)/(1 — &), p,/(1 — 8)]. For all V€T, de-
fine T*(V') and T(V) by:

(17) Prwy+1= 1-8)(V-8); PTwy+1= a- 5)(V_ B—(1 _x)Po)-

ForalVel:(1-8)V—-B—(1—x)py)=poll —(1—-8)1—x)]—B>xp,—
B >0 by Assumption (A); hence 0 < T* +1 < T+ 1 < + oo (the dependence on
V will be omitted when no confusion arises). The states T* and T, which
determine adjustment in the benchmark cases where speculators never or always
store, also provide bounds on the actual time of adjustment:

LEMMA 2.1: Let (g, ¢, V') be a continuation value equilibrium, with V € I'. For
al teR,: (i) If t <min(T*, 7 — 1), then q,=0. (ii) If t>T or t=T < 7, then
q,=1. (iii) If t=T>r, then q,> (P, + a— 8P, ) /[8(Py— P,..;)] and q/ =1.

ProoOF: Cf. Appendix 2.

Thus, the game starts with a phase of pure, inactive, strategies (¢,= g/ =0 for
t <min(7™*, 7 — 1)) and ends with a phase of pure, active strategies (¢,= g/ =1
for ¢> max (T, 7)). In particular, if the price has not been adjusted by T, the
adjustment takes place with certainty in the following period, even though all
speculators have stored: the firm cannot wait any longer and gives up its attempts
at a surprise adjustment.

!4 Since the firm plays at discrete intervals of time, it will in fact adjust the price when the state
K[T*(V)] = min{k € N|k > T*(V)} is reached.
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2.2. The Phase of Mixed Strategies

By (13), the probability g, of a price increase in the next period which leaves
speculators indifferent between storing at the price P, (¢ > 7) and not storing is:
18 P+a—-8P,, 0°7'(1/6—-1/6)+a/8S
U T R S
which is less than one, since ¢ > 7, or P,+ a < §P,. Similarly, the fraction g, of
speculating customers storing in state ¢ which leaves the firm indifferent between
the real prices P, and P, ., in the next period is, by (14): ¢/=(V—-B8-V,,1)/
[A = x)(po — p,+1)]- But by (12):
(19) I/;+1 >Pr+1(1 + (1 - x)‘]x/+1) + 6(V_' 18 - (1 - x)qtl+1p0)’
with equality if g,,; > 0. During a mixed strategy phase, g, therefore obeys the
difference equation:
BPO_le (1—8)(V—,B)—p,+1

20 q =—-q/ 1+
( ) ! Po—DPi+1 ah (1_x)(P0_P;+1)

DErFINITION 2.2: Define the following functions:

0-'1/6—-1/6)+ a/8S
(1) Q. teR, - Qt=min{1, ( /1_0{(131) e/ }

(i) Forall VeTl,y,: (t,y)E[r—1,+0) XR >, ,(») given by:

800 — Pis1 (1—8)(V_,B)_P1+1
= -y +
\Pz,V(Y) Po—Pis1 Y 1=x)(po—pPis1)

=a,,1°y+bqy.

During a phase of mixed strategies, ¢, = Q, and ¢, =1V, ,(¢q/;;) by (18) and
(20). Since g,/ =1 for ¢t > max(T(V'), ) by Lemma 2.1 and Theorem 1, g/ must
coincide, during the mixed strategy phase, with the solution Q; ,, to the difference
equation:

(21) Qlv=0,1"Ql1v+ b1 y="0,(0Ql1v)

for the same terminal condition at max (T(V), 7). This function is constructed
below on [7 — 1, T(V')] (when nonempty) by backwards induction.

DEFINITION 2.3:  For all V€T, define Q; ,: t€[r—1, +0) = @/, by:"®
6 Q/,=1 on [max(r—1,7T(V)), +o);

(i) Q;,V=‘Pt,y(Qt/+1,V) =Y,y °\Pz+k,V(1) on [7_1’7:([/))’
where kEmin{jeN|t+j+1>T}.

'3 Throughout the paper [a, b) = (a, b) = @ for all (a, b) with a> b.
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Unlike Q,, O/, depends on V; this subscript will be omitted when no confu-
sion results. The following lemma describes the dynamics of Q and Q’, which will
be shown below to define the equilibrium strategies (¢,= Q,, g/ = Q/) during a
unique, connected, phase of mixed strategies.

LeMMA 2.2: (i) The function Q: t — Q, is continuous, equal to 1 for t < T, and
then decreasing to its limit Q,, = a/8S > 0. (ii) For all V €T such that T(V') >
T — 1, the function Q}: t = Q] , is continuous and increasing on [1— 1, T(V)].

ProOF: Cf. Appendix 2.

INTERPRETATION: During the phase of mixed strategies the (conditional)
probability Q, of a price adjustment in state ¢ is decreasing. This somewhat
surprising result can be explained as follows. Not only does the real gain
80P, — P, — a realized by storing before a price increase become larger over time,
but the loss P,+a— 8P, ; incurred if the adjustment does not materialize
becomes smaller; to deter speculation—or at least keep speculators indifferent
between storing and not storing—the probability of realizing the gain must
decrease over time.!¢

The increasing fraction (1 — x)Q; of buyers who store during the phase of
mixed strategies accords well with observation. It is not due to storage’s increas-
ing profitability, but again to the necessity of keeping the firm indifferent. Both
the benefit from price adjustment ¥, — 8 — V,,; and the corresponding loss per
storing customer p, — p,,, increase with ¢, but the former faster than the latter;
to achieve indifference on part of the firm, the number (1 —x)Q; of storing
customers must be increasing.

2.3. Characterization, Existence, and Uniqueness of a CVE

Since Q! € (0,1) leads to-indifference for the firm, ¢,(¢/,,)Q/ <0 means that
not adjusting the price is strictly preferred in state ¢ (similarly, ¢,(1) > 1 means
that adjustment is strictly preferred for ¢ > T'). The time T at which the firm
starts adjusting with positive probability can therefore be computed by moving
backwards from 7, and looking for the unique zero (if any) of the continuous and
decreasing (as ¢ decreases) function Q": t = Q.

DEFINITION 2.4: For all V €T, define T(V') as follows: (i) If T*(V)<7—1,
I(V)=T*V). () If T*(V)>7—1, T(V) = min{r € [t — 1, T(V)]|Q/,, > 0}.

16 While this result may not remain when customers are sufficiently heterogeneous (with for
instance a continuous distribution of storage costs) it is an important warning against the fallacious
intuition that the price increase should always grow more and more likely.
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Note that 0 < T+ 1 < T+ 1 (the argument ¥ will be omitted when no confu-
sion results). The equilibrium configuration will be determined in particular by
the relative positions of T and T (beginning and end of the phase during which
the price is adjusted with positive probability in the continuation value game
corresponding to V), with respect to the fixed r and p (minimum date for
storage to start, and maximum date until which a deterministic adjustment can
be optimal if all speculators have stored). It is fully characterized by the
following definition, which pieces together, at T and T, the three phases of the
equilibrium:

DEFINITION 2.5: Define on I' the correspondences 2, £, and § as follows:
(i) Q:(V)={geFNt:q=0if1€[0,T); q,€[0,0,]if t=T;
¢,=0,ifte(I,T); ¢q,€[Q,1]if t=T;
g =1ifte (T, +w)}.
(ii) 2,(V)={g €FNt: ¢/=0if t€ [0,max(r,T));
q/=0ift=T>r;q/€[0,0/]if t=7>T;
g/ =0, if t€ (max(7,T), +0)}.

Q(V) =2 (V) x25(V)

unless T=7—1>0and ¢,_,(q’) #0;
2,(V)=2,(V)n {7|‘11'=Q1}

if T=7—1>0and ¢,_,(q;) >0;
2,(V)=2,(V)n {7IQ_T=O}

ifT=7r—1>0and y,_,(q.) <O.

(iii) (V)=

The correspondence £ uniquely determines the firm’s strategy ¢, in all states
teR, except possibly T and 7, while 2, uniquely determines speculators’
(average) strategy g/ in all states except possibly 7. Uniqueness is from here on to
be understood as uniqueness up to these possible indeterminacies. The following
result is central to the paper.

THEOREM 2.1: For any V €T, there exists a unique continuation value equilib-
rium (gy, ¢y, V), and the strategy pair (g, ¢1,) is uniquely determined as the
solution to: (¢, ¢") € Q(V'). Moreover T(V') < T*(V'), with strict inequality if and
only if T*(V)>r—1.

PrOOF: It is based on the simultaneous resolution of (12)—(13)-(14) by
backwards induction, from T to zero; cf. Appendix 2.
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The first part of the theorem and the definition of (V) confirm that
equilibrium strategies are first equal to zero, then mixed according to Q, for the
firm and Q/ for speculators, then equal to one. The second part is quite intuitive:
if T* + 1 < 7, the firm can adjust its price at 7* + 1 before speculation becomes
profitable (T+1=T*+1); if T*+ 1>, on the contrary, speculators try to
store before the price increase, while the firm tries to adjust its price before too
many of them store; as in many models of asset price determination (e.g. foreign
exchange), this causes part of the price changes (here, the total change but with
probability less than one) to take place earlier than it would in the absence of
speculation (T+ 1< T* +1). In addition to advancing the potential price in-
crease, the firm randomizes it, when 7 < T < T; but since both sides play at
discrete intervals, mixed strategies are effectively implemented on the equilibrium
path only if [7,7) contains an integer, or K[T(V)]<K[T(V)] (recall that
K[y]=min{k €N|k>y|, Vy €R}). The following result gives a sufficient'’
condition for this to occur:

PROPOSITION 2.2: If max(t, #) < K[T(V)), then K[T(V)] < K[T(V)], so that
the equilibrium outcome is stochastic.

ProOF: Cf. Appendix 2.

2.4. The Four Possible Forms of Equilibrium

Definition 2.5 completely describes continuation value equilibria,’®*—and in
particular any full equilibrium—of the game: depending on the relative positions
of I, T, 7, and p, they can take one of the four basic forms illustrated in Figures 1
to 4, on which the solid dots indicate the discrete states in which players may
act.!?

A. Pure Strategy Equilibrium: When T < 7, the equilibrium involves only pure
strategies: the firm increases its price if the time elapsed since the last adjustment
is greater than T, and all speculators store if it is greater than 7. The firm in fact
adopts an (S, s) rule, resulting in price adjustments of periodicity K[T'] + 1.

A.1: When K[T]<int[7], this adjustment occurs without any storage; it is the
discrete time analog of the solution of Sheshinski and Weiss (1977), who deal
with the limiting case 7= + oo (hence T'=T* = T'); cf. Figure 1.

A.2: When K[T]=int[7]+ 1 (which requires K[T(V)] <int[u]), the adjust-
ment occurs with all speculators storing; this case is identical, for all practical
purposes, to B.2 below.

7 The condition is almost necessary as well: when < K[T]<p, 0<T—T<1, but [T,T) may
still happen to contain an integer.

8 Por all ¥ €T} it is easily shown, from (12) and (13), that in any CVE ¥, must belong to I.

!9 The full equilibrium of the game can indeed take any of the four basic forms identified here for
continuation value equilibria, depending on parameter values: cf. Table I in Section 4 and footnote
(25) below.
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FIGURE 1.—Pure strategy equilibrium with no storage.

B. Mixed Strategy Equilibrium: When T>r, there is a nonempty phase
(max(7,T), T) of mixed -strategies on both sides; given that players act at
discrete intervals, three types of outcomes are possible.

B.1. Mixed strategy equilibrium with deterministic outcome and no storage:
When K|[T] < int[7], the outcome is again an adjustment of periodicity K[T'] + 1
< int[7] + 1 and no storage. Only if the firm deviated, so that real price dropped
below P,, would mixed strategies be implemented (cf. Figure 2); the ensuing
outcome would then be similar to B.3 below.

B.2. Mixed strategy equilibrium with deterministic outcome and full storage:
When K|[T]> int[7] and the interval (7, T') contains no integer (which requires
that K[T]<int[u] <1/(1 — x)), the phase of mixed strategies is so short that
players’ actual moves “skip over it” to the final pure strategy phase, and the
outcome consists of price adjustments of periodicity K[T'] + 1, with storage by
all 1 — x speculators. This case occurs when 1 — x is small (so that p is large): the
firm maintains a deterministic (S, s) rule, forfeiting the small loss from storage
for the benefit of charging the maximum price to nonspeculators (cf. Figure 3).

B.3. Mixed strategy equilibrium with stochastic outcome and increasing storage:
The case where K[T]>int[r] and the interval [T,T) contains at least one
integer (which always occurs when K[7T]> max(int[],int[p])), gives rise to a
radically new type of outcome. The firm might be said to follow an (S, §) real
price rule, where the tilde indicates a random variable, which here has support in
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FIGURE 2.—Mixed strategy equilibrium, deterministic outcome with no storage.
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FIGURE 3.—Mixed strategy equilibrium, deterministic outcome with full storage.
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FIGURE 4.—Mixed strategy equilibrium, stochastic outcome with increasing storage.

[Pr, 1 P7.1]° The nominal price remains pegged for K[T] periods; in every
following period there is a probability Q, that a price increase is about to take
place; if it still has not occurred after K[T'] periods, it then takes place with
probability one in the next period. As to buyers, they store in increasing numbers
(1 —x)Q/ until the adjustment takes place; if it has not occurred after K[T]
periods, there is a generalized “run” on the good by speculators (cf. Figure 4).

The discontinuous profile of g, can be intuitively understood as follows.
Absent storage, the firm would adjust with probability one at T*, resulting in a
jump of size one in g,, as in Figure 1; in response to speculation, it spreads out
the probability mass on both sides of T*, i.e. on [T, T, with parts of the original
discontinuity remaining at the extremities. In earlier states [T, T*], the firm tries
to take advantage of speculators’ low inventories (cf. Theorem 2.1); in later states
[T*, T], high inventories reduce the profitability of adjustment, making the firm
less eager to adjust (cf. Section 2.1).

3. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

The preceding section’s results on continuation value equilibria will now be
used to establish the existence and uniqueness of a full (Markov perfect)
equilibrium of the original game.

20 With a more general (elastic) demand, the optimal policy would involve randomization over the
upper bound as well ((S, §) policy).



OPTIMAL PRICE DYNAMICS 59

3.1. Existence

Note first (cf. Section 1.6) that if (¢, ¢') is an equilibrium, then (g, ¢',V;) is
trivially a CVE, where ¥}, is the value at zero of the solution to (12) Conversely,
to every V corresponds (Theorem 2.1) a unique CVE (¢, ¢7, V);!8 ¢y and g,
are then optimal controls in (11) and (12’), which coincide with the original
Bellman equations (11)—(12) if and only if the value ¥} at zero of the solution to
(12') is equal to V. This e.p.v. of profits in state zero resulting from (g, ¢}/) can
be computed as a function ¥, =f(V); a MPE is therefore uniquely defined by a
fixed point of the function f, which will now be specified.

For all V€T and any (g, ¢) € 2(V), define from here on K =K|[T], K* =
K[T*], and K = K[T]. By Definition 2.5, g, = g; =0 for k < T, while two cases
are possible in state K > T either T& N, so K> T and gg=Q>0,0or K=T€
N, hence T#7—1, s0 gx€[0, Q] # {O} In both cases, adjusting the price is
one of the firm’s preferred actions following state K, and never before; ¥V, can
therefore be computed (directly or by iterating K times equation (12')) as:

K
(22) Vo= 3. 8%p, +8%q; (1 — x)(px—8po) + 85+ (V= B)=£(V).
k=0

The function f depends on ¥ both directly through the final payoff, and
mduectly through speculators’ strategy ¢, which determines K and gg (note
that since 7 & N, K # 7, implying by Definition 2.5 that g is the same for all
¢’ € 25(V'); the notation f(V') is thus legitimate).

LeEMMA 3.1: For any sequence (V"),cn converging to V€T, the sequence of
functions (Qyn: t = Q] yn),en converges to Qi: t = Q/y on [T—1, + 00) for the
norm of uniform convergence.

Proor: Cf. Appendix 3.

Although the integer-valued function K is not continuous, this lemma and the
recursive properties of Q}, (cf. Definition 2.3) can be used to prove that f is.

THEOREM 3.1: The function f is continuous and has a fixed point in I'. Therefore,
there exists a Markov perfect equilibrium of the complete game.

ProoFr: Cf. Appendix 3.

3.2. Uniqueness

By Theorem 2.1, there is only one equilibrium corresponding to a given value
= f(V,).'® The intuition for why two equilibria with different valuations V
and V? cannot exist either is the following. If ¥ > V2, the firm is more eager to
adjust in the first equilibrium than in the second; hence T(V;}) < T(V). To keep
it indifferent during the mixed strategy phase [T, T], consumers must store more
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under ¥y than under Vi%; hence Qi > Qj. everywhere, and T(Vy) < T(Vy).
Since storage is costly to the firm (in equilibrium), this can be shown to imply, by
(22), that the e.p.v. of profits in the first equilibrium is lower than in the second:
f(VYH < f(V#), hence a contradiction.

THEOREM 3.2: The Markov perfect equilibrium of the game is unique,”* up to
possible indeterminacies of speculators’ strategy at their critical point 7, and of the
firm’s strategy at its thresholds T and T.

Proor: Cf. Appendix 3.

4. INFLATION, SPECULATION, AND WELFARE
4.1. Destablizing Speculation

The effects of speculation on price dynamics are best understood by comparing
the equilibrium outcome to the optimal periodic adjustment in the absence of
storage (Sheshinski and Weiss (1977)). Let therefore K™ be the state in which
the price is adjusted with probability one when no customer can store, i.e. the
value of K= K* when x =1 or when a > 8S.

PROPOSITION 4.1: In equilibrium: (i) if K™ <int[7], then K= K* = K™ < K;

@) if K™ >int[r], then int[r]< K< K™ < K*<K; (i) if K™ >
max (int[7],int[p]), then K< K —1.

Proor: Cf. Appendix 4.
These results have a simple interpretation:

PROPERTY 1: If, at the time K" + 1 when the firm would adjust its price in
the absence of storage, the magnitude of the price increase does not justify
storage by speculators (K™ + 1 <int[7] + 1), this deterministic policy remains
optimal (Figure 1 applies, with K = K"*).

PROPERTY 2: If the price increase at K™ + 1 is sufficient to induce storage by
speculators but the total loss which they inflict on the firm is not too large
(int[r]+1 < K™ + 1 <int[p] + 1), because for instance there are few of them,
adjustment at K™ + 1 remains optimal,?? although all speculators have stored
(Figure 3 applies, with K= K™ = K).

PrROPERTY 3: If, on the contrary, the threat of speculation is effective
(K™ 4+ 1> max(int[7],int[p]) + 1), the firm must implement a different strategy,
leading to either a deterministic adjustment of shorter period int[7] + 1 (Figure 2

2 In fact, generally unique: it was assumed that & N and p & N.
2 Cf. footnote (17).
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with K =int[1]), or a randomized adjustment which also attaches more weight to
earlier dates (Figure 4). The price increase will thus generally occur before
K™ +1, as the outcome of a phase of price uncertainty and increasing amounts
of storage by buyers.

In this last case, speculation is destabilizing, of both prices and quantities, in
any sense of the word; Section 4.3 will show that it reduces social welfare as well.
Moreover, destabilizing speculation arises here in the absence of any stochastic
shocks or informational problem bearing on insurance markets, but from the sole
dynamics of imperfect competition.

4.2. Inflation Causes Price Uncertainty

A causal relationship between inflation and relative price uncertainty features
prominently in macroeconomic discussions of the costs of inflation (cf. Fischer
and Modigliani (1978), Fischer (1981a, b), (1984)). This argument is supported by
the positive correlation between the two found in many empirical studies (surveyed
in Fischer (1981a) and Taylor (1981)), but no theoretical basis has yet been
offered for it.> The above mechanism, by which an optimal type of noise is
injected into price dynamics in order to deter speculation, provides such a
foundation.?*

Since inflation lies here at the origin of both speculative storage and endoge-
nous price uncertainty, the comparative dynamics of the equilibrium with respect
to 7 are of particular interest, in particular to ascertain whether these causal
relationships are monotonic. The dependence of the equilibrium on = is unfortu-
nately too complex to allow analytical comparative dynamics exercises, such as
can be done with a or B8 (cf. Bénabou (1986)). Tables I and II present the results
of numerical simulations, which point to the following characteristics.

RESULTS OF SIMULATIONS: As the rate of inflation increases: _

(i) The support [K+1,..., K+ 1] of the random period T of price rigidity
separating consecutive price adjustments shifts down by steps; the expectation E(T')
decreases with large enough increases in w, but may increase with small ones (when
the support remains unchanged ).

(ii) The amount of speculation increases in every period.

(iii) The variance of the following period’s real price increases with w in all
periods preceding the occurrence of the adjustment; thus, more inflation causes more
uncertainty.?

2 In Sheshinski and Weiss (1983) or Caplin and Spulber (1988), deterministic (S, s) rules only
amplify the exogenous variability of general infiation.

24 Even if exogenous uncertainty is generated by parameters such as 7 or B, the firm must still
“process” it so as to optimally deter or reduce storage.

For 7 < 5%, the equilibrium is of type A (pure strategies, no storage), because K = K" <int[7];
for m=17%, it is of type B.1 (mixed strategies, deterministic outcome without storage), because
K =int[7] < K™ = K; in all other cases it is of type B.3 (stochastic outcome). Type B.2 (deterministic
outcome, full storage) occurs only for high values of x; for instance, x =0.95 with 7 =30% yields
intfr]=4,K=K"=K=11.
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For a given inflation rate, the uncertainty faced by buyers also increases over
time,?¢ until it is suddenly resolved by the occurrence of the price adjustment.
Inflation thus generates—and when it increases, exacerbates—growing price
uncertainty, a shortening of the price cycle (E(T) < K" + 1 in general, cf. Table
1)), and mounting speculative storage. These results give precise meaning to the
following description by Buchanan and Wagner (1977) (quoted in Fischer (1984)):

“Inflation destroys expectations and creates uncertainty; ...it prompts behavioral
responses that reflect a general shortening of the time horizon.”

4.3. Some “New” Welfare Costs of Inflation

The storable nature of most commodities?’ provides each price maker with an
incentive to inject noise into the price system (oligopolistic price competition may
have similar but weaker effects; cf. Maskin and Tirole (1986)). This incentive
could be the source of a price uncertainty externality, which no one likes to
experience but all contribute to. Agents were assumed risk neutral, for analytic
tractability, but the essential results would remain with risk aversion, since risk
averse buyers also store when faced with a certain and large enough price
increase. In any case, price uncertainty has costs even in the absence of risk
aversion, because it prevents the synchronization of price decisions (e.g. output
price adjustment and wage contracting); as a result, relative price distortions and
misallocations may propagate themselves across sectors (Blanchard (1983)). The
following result also identifies several other costs of inflation, to be added to the
lists drawn by Fischer and Modigliani (1978) and Fischer (1981).

PROPOSITION 4.2: In equilibrium, expected intertemporal social welfare is:**

B S—c

T 1-8
_ B+ (1 -—x)(a + C(l - 8))Z§=58k(1 - ‘15)---(1 - ‘Ik—l)qli
1_azfs_xak(l"CI_lg)---(l_‘Ik—l)qk '

(23)  SW,

Proor: Cf. Appendix 4.

The first term is welfare in the absence of inflation; the second one is therefore
the total social cost of inflation (and of the speculation it induces) which has

26 During the mixed strategy phase, the expected price in the next period is, by (13), (P, + )/8,
which decreases with both « and #; the two results of increasing uncertainty in Table II therefore also
hold if the coefficient of variation, rather than the standard deviation, is used.

27Or intertemporal substitution of consumption; cf. footnote 2.

SW, is normalized by assuming that the game starts with real price S and zero inventories; other
hypotheses are easily dealt with, following the methodology of Section 1.5.
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three components, linked together by the equilibrium strategies (¢, ¢): price
adjustment costs, storage costs, and the intertemporal misallocation of produc-
tion due to speculative purchases. A stochastic equilibrium also gives rise in each
period to significant income redistributions between firm and buyers, depending
on whether the price increase materializes or not.

5. LONG RUN EQUILIBRIUM, AGGREGATION, AND NONNEUTRALITY

The fact that discontinuous and even randomized individual price policies may
arise in response to a constant rate of increase in the general price level raises two
important and related questions. The first one was addressed by Caplin (1985) in
the context of (S, s) inventory policies, and by Caplin and Spulber (1988) in that
of (S, s) real price rules: are individual strategies consistent with the assumed
general inflationary process, both individually (a firm’s price should increase, on
average, at the rate 7) and in the aggregate (an index of many such firms’ prices
should increase at the rate 7)? Secondly, how does the cross-sectional distribu-
tion of prices among many such sellers depend on inflation, and what are the real
effects of this dependence?

5.1. The Steady State Distribution of Real Prices

Consider a sector consisting of a continuum (indexed by 7 € [0, 1]) of identical
monopolistic sellers of nonsubstitutable?® storable goods, who pursue a common
randomized (S, §) real price policy with respect to some aggregate price index P*
(for instance the cost of labor).>® For all n € N, denote by #,(n) the proportion
of firms in state k, ie. with a real price of P,=S(1 + )% in period n;
h(n) = (ho(n),..., hy(n)) is thus the cross-sectional distribution of firms’ real
prices; it could also be interpreted as a prior on the state of a single firm at time
n. By the law of large numbers, the dynamics of 4(n) are characterized by the
same Markov chain which governs the evolution of an individual firm’s real
price:

(24)  h(n+1)=h(n) M,

[ 4o 1-¢4, 0 C -0 |
4 0 1-¢, 0 - - -0
(25) M=|q, O . 0 1-g, 0 - 0
gg-1 O : o -0 1-4qg,
[ 1 0 . .o . .0 |

2% When firms are competing, the adjustment level (here S) becomes an endogenous function of the
distribution of prices; cf. Bénabou (1988).

30 This index may include the firms’ own prices, but must also include some outside good(s), if the
model is to be consistent in level as well as in growth rate (cf., for instance, equation (27) below).



66 ROLAND BENABOU

h*y
~ . randomized
WE[T) — e
0 ns+l] - V. 2 e
1k T
/ E determinislic/
1
|
a1 Py

T

h
Ix

PR Py ns Po=8

FIGURE 5.—Cross-sectional distribution of real prices in the deterministic (no storage) and
randomized cases.

Under certain conditions examined below, the long-run behavior of the system
is described by the invariant probability distribution of this Markov chain (cf.
Feller (1968)). By (24), a distribution h* is invariant over time if and only if it is
a left-eigenvector of M with eigenvalue 1.

PrOPOSITION 5.1: The Markov chain governed by M has a unique invariant
probability distribution h* = (h¥, hf,..., h%), defined by:

k-1

(26) (Vke{o,...,l?}),h,j=(1/11)-_I]O(l—qj),
=

where q_, =0 and

K
H= Y
k=0

[

n(l_Qj)=E[f]-

k—
j=0

PROOF: (26) is straightforward algebra; factoring the terms in the first expres-
sion for H yields H = Z§_o(k + 1)¢,J1520(1 — q,) = E[T]. Q.E.D.

This steady-state distribution is uniform (h} =1/H) over the real prices
{ Py, ..., Py} belonging to the phase of nonstochastic adjustment (as in Caplin
and Spulber (1988)), then decreasing over the real prices { Pg,,,..., Pg} which
are reached through randomized adjustments. Figure 5 illustrates A* in the
no-storage, deterministic case (“ns”), and in the speculation-induced randomized
case.’!

When price strategies are nonstochastic (S, s) rules, the distribution h(n)=
h(0) - M" does not generally converge to A* in the long run, since M is then
cyclical (of index K -+ 1; cf. Varga (1965)). In particular, a positive mass of firms
starting with the same real price will remain synchronized forever, generating a

3! Under deterministic (S, s) rules, the dispersion of real prices is known to increase with the rate
of inflation (cf. Bénabou (1988)). Randomization is thus a further source of dispersion (cf. Figure 5);
with a more elastic demand, this phenomenon would also occur at the upper limit S (cf. footnote 20).
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component of the cross-sectional distribution which cycles through all states and
causes any aggregate index to be discontinuous. For randomized (S, §) rules, on
the contrary, the following important property holds:

THEOREM 5.2: If firms’> common (S,§) price strategy is randomized, i.e. if
qx <1, the cross-sectional distribution h(n) of their real prices converges to the
invariant distribution h*, for any initial h(0).

Proor: Cf. Appendix 5.

The intuition is simple (more so than the proof): firms sort themselves out
through different random drawings of their adjustment dates. Similarly, when
gx <1, any unconditional prior over the state of an individual firm converges to
h*. With either interpretation, the long-run can thus legitimately be identified
with the steady-state distribution.

5.2. Individual Price Strategies and General Inflation

Denoting by E*[-] the expectation operator with respect to the distribution A*,
the average price inflation in a representative firm 7’s nominal price P,,N(n) will
now be computed.

PROPOSITION 5.3: E*[log(PN(n +1)/P}N(n))] =log(1 + 7).
Proor: Cf. Appendix 5.

As in Caplin and Spulber (1988), who deal with the case of a determi-
nistic (S, s) policy in an exogenous stochastic inflationary environment,

N(n +1)/P, N(n) is therefore a geometric mean-preserving spread of the aggre-
gate inflation rate. Fixed costs models of adjustment thus seem to possess the
general property of being noise-amplifying, and here, even endogenously noise-gen-
erating: the resulting individual price dynamics are more roisy than the infla-
tionary process in response to which they arise. This feature contrasts sharply
with the noise-dampening characteristics of all models based on misperceptions
of nominal and real signals (4 la Lucas), on nominal contracts, or on convex
adjustment costs, where the only uncertainty in the price system is a fraction of
the exogenous noise injected into the economy.

THEOREM 5.4: If firms’ real prices are distributed according to the invariant
distribution h*, any index of their nominal prices of the form P(n) =
G[ fow(P)(n)) dn] which is homogeneous of degree one, grows at the rate m. If
adjustments are randomized (qx<1), P(n) is asymptotically equivalent to an
exponential trend of rate w, for any initial distribution of prices.
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ProOOF: By homogeneity, and since i (n) is the image of the Lebesgue measure
on [0,1] by the random variable n — P,(n) € [0, S]:

K
- 1
(27) P(n)/P*(n) =G[f0 w(P,(n)) dn] =G[ Y w(Pk)hk(n)}.
k=0
The last term is a constant if # = h*, and in any case converges to that constant
when gg <1, by Theorem 5.2. Q.E.D.

Individual stochastic (S, §) pricing strategies thus aggregate back to a price
index inflating at the same rate « as the one in response to which they arose. This
result (covering in particular the arithmetic and geometric averages) has several
important macroeconomic applications.

First, even a constant aggregate rate of inflation, resulting for instance from a
constant growth rate of the money supply, can at the same time generate and
“cover up” substantial social costs at the microeconomic level; these include
menu costs, storage costs, distortions in the relative timing of production and
sales, and price uncertainty.

Secondly, although price-setters keep pace with inflation in a growth rate sense,
inflation alters the relative prices between a sector where (S, s) or (S, §) rules
prevail and the rest of the economy: both P* and P grow at the rate 7, but (27)
makes clear that the ratio P(n)/P*(n) depends on «. This nonneutrality of the
inflation rate with respect to relative prices contrasts sharply with Caplin and
Spulber’s (1988) result that unanticipated money shocks are neutral in an
aggregated (S, s) model. It provides a basis for models of the Phillips curve
(Naish (1985), Spulber (1987)) or search market equilibrium with inflationary
price dynamics (Bénabou (1988)).

Finally, on the transition path to the steady-state distribution (following for
instance an unanticipated general inflationary shock), the time varying cross-sec-
tional distribution of real prices will generate an inventory-driven (dampened)
cycle in market demand.

CONCLUSION AND EXTENSIONS

This paper showed in particular that the seller of a storable good in an
inflationary environment generally introduces randomness into its price dynam-
ics, while speculators store in increasing numbers, with possibly a final “run” on
the good. These results establish that speculation can be destabilizing even with
perfect information, and provide a theoretical foundation for the frequent claim
that inflation causes price uncertainty.

The mechanism at work here is in fact quite general. Consider a country which
tries to peg its exchange rate, but, because of a positive inflation differential with
its trading partners, must devaluate repeatedly in order to maintain balanced
trade in the long run. Devaluations are costly, politically or because they require
international bargaining (as in the European Monetary System), and cannot take
place at predictable dates because of speculation. The situation is very similar to
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the price adjustment problem treated here, and it could be analyzed with a
variant of the model, leading most likely to the conclusion that the central bank
will pursue an optimally randomized exchange rate policy.

CEPREMAP, 142, rue du Chevaleret, 75013 Paris, France

Manuscript received November, 1985; final revision received February, 1988.

APPENDIX 1
PROOF OF THEOREM 1: (i,ii) are proved in the text.
(iii) The following result will prove useful many times:
(A1) Vizr—1, po1<p,=8S—a—c<8(S—c)=20p,.

Let now 7> 1 such that t>17,q,_; =0 and ¢,=1; then ¢/_; =0 and ¢/ =1 from (ii). Moreover, as
q,+1 =1 is always feasible, (12') implies:

Vis1 2P +8(V=B) +¢/11(1 = x)(Prs1 — 8p0)-

Since g, = g/ =1, (14) requires:
A=x)(po=P+1) =4 (A =x)(Po=Prs1) SV—=B— Vi1 =
(I=x)(Po=Pr1) SA=8)(V=B) =pr1+ ¢1(1 = x)(8po = pr11) =
(1-8)(V-B)>(1-8¢/,1)A—-x)po+ (1~ (1= x)(1~4/s1)) P

since g,=¢q/ =1, V,= (2 —x)p, +8(V — B —po(1 — x)); since q,_, = gq/_; =0, (14) requires:
V=B=V<0(p-p) o (=-8)(V-B)<@-x)p—(1-x)dp=
(2-x)p—(1-x)8p> (1-8¢/1)(1—x)po+ (1 A= x)A = ¢/41)) Prsr =
@-x)p—A=x)po> (1= g/s1) (A= x)8po+ (1= (1 = x)(A = ¢/41)) Pr+1 > Prr

by (Al). kHence: F(t;0,x)=p,—(2p,41 + 1 — 2) py) > 0, where z=1/(2 — x). Equivalently, since
p=8S0"%—c

p(m, x)=log[(1—2z2/0)/(1—z)]/log(0) > t.

Therefore, g, =1 and ¢,_; = 0 is impossible for ¢ > max(r, p). Q.E.D.
(iv) The signs of the derivatives of 7 are straightforward algebra, and so is that of dp/dx. As to
du/dm=3dp/30:

8(1—2z/8)(log(8))” 3n/36 =log(8)z/0 +log[(1 —2) /(1 ~ z/8)](1 - 2/0)
<log{z0/0 +[(1—-z)(1-2/0)/(1-2/8)]} =0
because z/6 € (0,1) and the log function is concave. As a consequence:
p.(0,x)<al_igl+ (r(0,x))=2z/Q1-2)=1/(1—-x). Q.E.D.

NoOTATIONS: From here on, let s(V)=(1—-8)(V—8) and &(V)=1-8)V-B—- (1 —x)py);
the dependence of ¢ and @ on V will be omitted when no confusion results.
PROOF OF LEMMA 2.1: (i) Since t+1<7: ¢/, =0and: V,,,>p,,; + 8(V— B) + 0. Hence:
V-B-Vu<1-8)(V-B)—ps1=0—py1=Prs1~ P11 <0,
so g, = 0 by (14). Q.E.D.
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(i) CLaAM 1: V t€R, t > T= g,> 0. Indeed, let ¢, = 0 for such a .
One cannot have g, ; > 0, otherwise:

Vie1=Ps1t0(V=8) +¢/11(1 = x)(prs1 —8po)

and since it is always the case that: ¢/, ,(p,..; — 6py) < O (the first term is zero when ¢ <7 and the
second is negative when ¢ > 7 by (Al)), this would imply: V,,, <p,,; +8(V —B), hence: V- B —
Vis1=0—p,1> P —pr,., =0, contradicting (14) with ¢, =

One cannot have V n €N, g, , =0, otherwise:

Vn Vien=PrantViini

SO:

+o0
= Z 8kPr+1+k <ps1/(1-8)<V-B
k=0

since (1 — 8)(V B)=06>®=ps.,>p,,, Thus, again: V- B— V,,, > 0, which contradicts g, = 0.
Thus Claim 1 is established. _

CLaiM 2: V t€R,, t>T and ¢, € (0,1)= q,,; €(0,1). Indeed, if ¢,€(0,1) and ¢g,,, =1 for
such a ¢, then:

Vie1=Ps1+0(V—B)+q/.1(1 = x)(Prs1—8P0), hence:
V—B=V1=0-p1— ¢Ix+1(1_x)(Px+1_8P0)>0’

because the first term is positive since 1+ 1> T+ 1> T* + 1, and the second is nonnegative due to
(Al). If t <1, g/ =0, so (14) and the above inequality imply ¢, = 1, a contradiction. If t >, ¢, ; =1
implies ¢/, , = 1; hence:
V=B-Vi1=0—(2-x)ps1+(1—-x)dp
=¢/(1=x)(po—Pis1) < (L —=x)(Po—Prs1)

by (14). Hence, p,., 20— (1-8)1—x)py=P = =PT+1, contradicting > T. Thus Claim 2 is estab-
lished. To prove the first part of (ii) by contradiction, it is therefore sufficient to show that g, € (0,1)
is impossible for ¢ > max(7, 7). Indeed, ¢, € (0,1) would imply: ¢,,, € (0,1), ¢/, , =1 and:

V=B-Vi1=0-8p(1-x)—p1(2—x)
=@-p 1+ (A-x)(Po—Ps1) > (1= x)(Po—Prs1)

so g, =1 by (14), a contradiction. Therefore, for all 1> T, q,=1 is the only possible case. We now
prove the second part of (ii). For 0<¢t=T<xr, ¢q,,, =1 from what precedes, so: V,,; <p,;; +
8(V — B); hence:

V-B-Vi120-p>P—p,;=0.
If t<7,q/=0s0 g,=1 by (14); if t=7,¢q,<1=Q, would imply g/ =0, hence ¢, =1, a contradic-
tion. Q.E.D.

(iii) By (ii), ¢,4, =1, and by Claim 1 above, g, > 0. Thus either ¢, =1, and then ¢/ =1, or

q, € (0,1), so:

V-B-Vi1=0- (2 x)PI+1 + (1 X)8p0 =q1’(1 - x)(PO_P1+1)~

Therefore g/ <1 would imply: @ < p,, ;, a contradiction. It is thus necessary that g/ = 1, hence by
(13): ¢,> (P, + a—8P,,1)/[8(Py— Pyy)). Q.E.D.
PROOF OF LEMMA 2.2: (i) Continuity is straightforward. For ¢ > 7,—(3Q,/dt) has the sign of:

1/6-1/0 a/8S

1/ L |=1/8-(-a/bs)/8>1/8-1/6>0. Q.E.D.

(ii) The proof of monotonicity and continuity proceeds in three steps. First it is shown by
backward induction that:

(A2) vie[r-1,T+1), /> (c-p)/[(1-8)(1-x)po]
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with strict inequality on [r — 1, T). Indeed, for t €[7, T+ 1): Q; =1, and the inequality is equivalent
to p, > @ = p7,,, so the property is true. Suppose now that it holds for 7 > 7:

(1 =x)Q/-1=[(8po—p)(1 = x)Qi + o~ p]/(Po—P:)
>[(8po—p)(o—p.)/(Po—38po) +o—p]/(Po—P:)
=[(o—p)(8po— P+ Po = 8P6)]/[ (2o = P.) (Po — 8P0)]
=(o=p)/(Po=38p0) > (o= pi-1)/(Po~ 8po).-

Hence the property holds for ¢ — 1, and (A2) is established. It implies:

(A3) vie[r-1,T],  0Q/>(s-p)/[(1-8)(A—x)po] =y.

Secondly, the function y: (#, y) = ¢,(y) is not only clearly continuous, but also increasing in both
arguments on [T —1, + 00) X (y, + ). Indeed, it is affine in y, with a positive coefficient by (Al),
and decreasing in p,,; because the determinant:

-1-(1-x)y o+ -x)ydp,
-1 Po

=o—p(L+(1-x)(1-8)y)=p(1—x)A-8)(y-»)

is negative for y > y.

Finally, (ii) can now be established by backward induction on successive intervals I, =
[max(r—1,T— k), T—(k—1)]. On the semi-open interval [max(r—1,7—1),T), by definition:
0/ = ¥,(1) which is continuous and increasing due to the above properties of { (note that y <1). As
the left limit Y7 (1) of Q; at T is easily seen to equal 1 = Q%, these two properties are also true on the
closed interval I,. Suppose now that the proposition holds up to rank k. On I, ; = [max(7—1,
T—k-1),T—k), Q] =v,(Q/,,); since Q;,; is continuous and increasing on I, and y, continuous
and increasing in both arguments (by (A3) Q/, > ), Q; also possesses these two properties. Q.E.D.

PROOF OF THEOREM 2.1: We shall make repeated use of the following simple lemma:

LEMMA 2.A: For any continuation value equilibrium (g, 4',V) and any t€R,: (i) (V—B—
Ver1)/IQ = x)(po = Piv 1)) < ¥,(4/s1), with equality when g, > 0. (ii) If q,€(0,1) and g,,, >0,
then g/ =4,(q/,1)- (iii) If g, =1, then q/ <¥,(q/+1)- If 4, =0 and g, > O, then q; >Y,(q/+1)-

PROOF: Straightforward from (19), (13), and (14).

Since Q, =1 for ¢ < 7, Lemma 2.1(ii), (iii) and Definition 2.2 imply:
(A4) V>0, ifte(T,+w),q=1;ift=T,q<[Q,1].
(AS5) Vix>0, ifte(max('r,f),+oo)ort=T>1-,q,'=l=Q,’.

Thus, there only remains to characterize ¢, on [0,T) and ¢ on [r,T) when T> 7, or on {7} when
T < 7 (by definition, [a, b) = @ if a>b).

CASE A: T+1 <. This implies T* <7—1, so T=T* by definition and ¢,=0 on [0, T*) by
Lemma 2.1(i). Moreover, by (A4), g, = 1, so by definition of 7, g/ can take any value in [0,1] = [0, Q).
It remains to examine g, for € [T*, T]NR,. On (max(T*,T-1), T)NR,: g,,;=1and ¢/,; =0
imply V,,, =p,,, +8(V—B), hence V—B—V,,,=0—p,,; >0; thus g,=1 by (14), since g/ =0.
Applying this proof to successive intervals (max(T*, 7 — k), max(T*,T— k+ 1)) "R, yields by
induction: (V t€(T*,T)NR ,, q,=1). Finally, when T*=T>0: ¢, =1, gfn,1=0s0 V- B —
Vs 11 =06 —pp 1 =0—ppr, =0 and thus g~ €[0,1] = [0, Q] is the only restriction imposed on
qr = qr+ by (13)-(14). This finishes to establish that (¢, ¢') € Q,(V), with T=T* <7 —1.

Case B: T+ 1>r. Note first that: [0,T]=[r,T]U {(r—1,min(r,T)]NR, }U[0,7—1], and
that all the intervals on the right-hand side are disjoint. Depending on whether the function Q/ has a
zeroon I=[7—1,T] or not, (cf. Lemma 2.2(ii)), two subcases are possible.
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SuBCASEBL: Vre[r—1,T), 9/ €(0,1). By Definition 2.4, T is in this case equal to min(r — 1, T*).
CLAaM 1:

(A6) vie(r,T), ¢=0, ¢=0.

The proof is by induction (assuming (7, T') # @). Forany ¢t in I = (max(r,T—1),T) + &, 0/i1=1
by Definition 2.3; therefore one must have 49,> 0, or else: 0=¢/ >,(q/+,) =¢,(1) = Q/ by Lemma
2.A(iii), a contradiction of hypothesis B1. Similarly, 4, <1 or else by the same lemma: 1 = g/ <y,(1)
= Q7. 1, another contradiction. Therefore g, € (0,1), which by Lemma 2.A(ii) requires ¢, =y,(q/, )
= @/ €(0,1); this in turn implies ¢, = Q,, by (13). Suppose it has been established that:

VIEIkE(max(T’T_k)’T)’ 49=0, qt'=‘»bt(qt'+1)=Q1'-

Let t€f;,,; since g, = Q,,, >0, if g, were zero, Lemma 2.A(iii) would imply: 0 =g/ > y,(q/,,)
=¥,(Q/,1) = @/, a contradiction; similarly, if g, =1, then 1 =¢; <¥,(¢/+1) =¥,(Q/1) = 0O/, again
a contradiction. So ¢, € (0,1), which implies ¢/ = Q! € (0, 1) by Lemma 2.A(ii), and thus ¢, = Q, by
(13); this finishes to establishes (A6).

CLAIM 2:

(A7) VtE(T—l,min(f,T)]nR+, =0,=1; q/<Q..

Let ¢ belong to the above interval. If r+ 1> T, 4+1>0by (Ad);if r+1<T,q,,>0by (A6). Thus
in both cases, by Lemma 2.1(ii):

V-B-V= (PO _PH-I)(l - x)‘l‘t(qtl+1) = (PO _P1+1)(1 - x)Qtl >0.

Thus ¢, <1, implying ¢/ =0, would also require g, =1 by (14), a contradiction. Moreover, from
4. =1 and Lemma 2.A(iii): ¢/ <y,(q/,1) =0, ie. q; can take any value in [0, Q/]. Finally, there
only remains to examine g, for t €[0, 7 — 1], in the case 7 > 1.
B1.1 If T* <7 —1: By Lemma 2.1(i): V¢ < T*, 4, =0. Let us now show the following claim.
CLAIM 3:

(A8) Vie(T*r-1]NR,, g¢=1.

Indeed, for €& (max(T*,7—2),7—1]NR,, cither t+1>T, so g4+1=1 by (Ad), or t+1€
(r=1,min(7, T)INR,, 50 g,,., =1 by (A7). Hence:

Vie1 =P +8(V-B8) +¢q/,,(1 =x)(Prs1—8P0) <pria +8(V-8)

by (Al), because the last term is zero unless ¢ + 1 = r. Therefore: V — B=V, 1>06—p,,>0. But
9/ =0, so by (14): q,=1=Q,. An induction identical to that of Case A above completes the proof of
(A8). Finally, g/v,; =1 and gj,,; =0 imply: V=B~ Vp,1=06—pre,; =0, so (when T* > 0)
gr+ can take any value in [0,1] = [0, Q). Thus we have shown: (2, 9)EQV),WithT=T*<7-1.

B12 If T*=7—1>0: then ¢,=0 on [0, T*)=[0,7—1) by Lemma 2.1(i). If r> T, q,=1 by
(Ad); if T< T, g, =1 by (A7), hence:

V=B-V,=(-x)(po~p.)¥:-1(47) =0 —p, + (1 — x) g/ (3P0 — 1)
=1 -x)q/(8py—p,).

Therefore, either ¥, _,(g/) =0, i.e. ¢’ =0, and then (#,9") € 2o(V); orelse y,_,(q7) >0, 1i.e. g7 >0,
and then ¢gr=g¢,_, =1 by (14), so (¢, ¢) €2, (V). In both cases, T=T*=7—1.
B1.3 If T >7—1>0: by Lemma 2.1(i), 4, =0 on [0, 7 — 1). Moreover, by (A7):

V=B=V.=(1=x)(po=p,)¥:_1(a1) =0 —p, + (1 - x) g/ (8po — 1)

Since g; can take any value in [0,Q’], ¥V — B—V, can take any value between o — 2, <0 and
(A =x)(po—P,)Q7_1 >0 (by hypothesis Bl). Therefore, by (14), (#,4)) belongs to Q,(V) if
¥,-1(q7) =0, to 2, (V) if ¥,_1(g?)> 0, and to V) if ¥,_1(q/) <0, with T=7r—1<T* always.

Subcase B2: 31t €[r—1,T), Q] =0. This requires: 7 — 1 <t < T*. Otherwise, m = max(T*,7—1)
satisfies 8pp — p,+1>0, 6-p,1>0 and Q;, <0; but (1 - x)(py—p,)0, =0 ~Pm+1+(8pp —
Py )1 = X)Q;,,, requiring Q, ., < 0. By induction, this implics: Q4,3 <0, Q%13 < 0r..., O s
<0, where k=min{neN|m+n>T). But Q/,, « =1 by definition, hence a contradiction. Since
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T*>7—1, Definition 2.4 then states that T=¢e&[r—1,T*). The function Q; is negative on
[1—1,T) and takes values in (0,1) on (7, T).

(2) Let us first examine (7, T). The induction used in Case B.1 to prove (A6) can be applied to the
intervals J, = (max(7,T,T — k), T) to show:

(A9) vie(max(r,T),T), 4=0Q., 4¢/=0I
Similarly, one proves, exactly as for (A7):
(AlO) VtG(I,T]ﬂR+, 9=1=0,; q: < Q7.

(b) Let us now examine t =T (when T>0). If T>7—1,47,, = 0}, by (Ad), (A5), and (A9),
$0: Y7(qr+1) = @7 =0. Hence by Lemma 2.A(i): ¥ — B — Vr,; < 0. Therefore, g7 =0, and by (13),
9r €10, Q7] If T=7-1,4;<Q; (by (A10)) implies ¥, _,(q;) <¥._1(Q;) = Q;_, = 0. Therefore,
by Lemma 2.A(i):

lf q:=Q‘:!1e ‘I’r—l(q-:)=0’ then qIE[OvQI];
ifg;<Q7,ie. ¢, 1(¢/) <0, then gr=0.

(c) Finally, it will be established by induction that g, =0 on [0,T). For re[T—1,T)NR,, by
(A9) and (A10): ¢, =Q,,1 >0 and ¢/,; < Q/,; (with equality except perhaps at = — 1). So by
Lemma 2.A(i):

V=B=Vi1=(Po=Ps1) (1= x)¥,(q/+1) < (Po—Pr+1)(1 —x)Q; < 0;

hence g, =0 by (14). Assume that the proposition holds on [T— k,T)NR,, and let t€ [T —k — 1,
T-k)NR,. Then ¢, =¢/,, =0, and by Lemma 2.A(i):

V-B-V.<( _x)(PO_Px+1)‘P:(q{+1) =(1 _x)(PO_PHl)‘Pt(O) =0-p41<0

since t+1<T+1<T*+1. Therefore g, =0, which finishes to prove that, for all re R,: (i) If
t€[0,T), q,=0; if t€(T,T), q,=0Q,; if t&(T, +o0), ¢,=1. (i) If t=T,q,€[0,0,], with the
additional restrictions that ¢, =0 when t=T=7-1 and y,_,(q/) <0, or ¢,=Q, when t=T=
7—1 and ¢,_,(¢;)>0. (i) If t=T,q€[Q,1]. (iv) If t€[0,max(r,T)),q;=0; if r€
(max(r,T), +),q/ = Qf; if T<7,q/€[0,0;); if T>7,4q/=0.

Equivalently: (g, ¢/) is in 2,(V) if T=7—1>0 with ,_,(g/)>0, in 2,(V) if T=r—1>0
with ¢, _,(g}) <0, and in Qy(V') otherwise. The condition (2, ¢") € Q(V) is therefore necessary for
(#,#', V) to be a continuation value equilibrium. Since the requirements of (12’), (13), and (14) have
been used and exhausted state by state in this proof, this condition is sufficient as well (this is also
easy to check directly). Finally, the only cases where T = T* are Cases A, B1.1, and B1.2, where
T*<7—1. Q.E.D.

PROOF OF PROPOSITION 2.2: Let 0 < max(r, p) < K= K([T); then Qg=1 and pg,; <pr., =@,
SO:

(1 =x)(po—Pr)Qk-1=(8po —PE)(1 — x) + 0 —pg
> (8po—pPr)( —x) +prir+ (1-8)(1 - x)po — Pk
=@ =x)po+pri1~ (2= x)pg=—-(2-x)F(K;0,x)>0

because K > p (cf. proof of Theorem 1(iii)). Therefore, T < K — 1 by Definition 2.4, hence the result.
Q.E.D.

APPENDIX 3

PROOF OF LEMMA 3.1: Define: by =b1 yn, byy = by, T"= T(V") 4 = Yy yn, ¥, =
Yo, @"=Qf yn, and Q/=Q/,. By Definition 2.3, Q/” and Q; are equal on [max(t—
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1,7,T"), + «). Let us compare them on
[+~ 1,max(T, 7)) = [+ - 1,min(T, 7))U[ min(T, T"), max(T, "))
(when nonempty), for n large enough to have |T" — T| < 1.
(a) For all ¢ €[r - 1,min(T", T)), by Definition 2.3:

Q:’=‘P1(Qzl+1)= T =g °4’t+k(1)’
where k €N is defined by T— 1 < 1+ k < T. Similarly:
—‘Pn(QHl = - =yfo.-- °‘I’7+k"(1)

where k” €N is defined by: 7" — 1 < ¢+ k" < T". Moreover: |T" — T|<1 implies that |k — k"[< 2,
so three cases are possible:

(1) k"=k: |Q | al+1|Ql+l Ql’+l|+|bl"+l_bt+1|

<ag|Q7%1 = @l | +18 4 _bz+1|<
(aoo)k+1|Qt+l+k Qt+1+k|+ Z (aao) |bl+l+_[ l+1+j

by induction, where a, =(8py —p,.)/(Po— P) € (0,1) is the limit, reached from below, of the
function a, (cf. Definition 2.2) at 1= + co0. But since k=k",Q/", ., =1=0Q/, ., so the first term
is zero, while for the second:

|81y = baray| = A= OV = VI/[ (A= 2)(po = Prr )] IV = VI/[(1 = %) o]
for all j€N and ¢> 7 — 1, by (Al). Therefore:
(A1) o= <V = VI/[(1-x)(1 - ay) po].-
(2) k" =k + 1: The same method applies, but now Q7,1 ., =1,0/% . =¥ 1.4 (1), so:
|Q1+1+k_Qx+1+k|=l(1_8)Po_("(V")_P:+k+2)/(1_x)|/(1’o‘Pz+k+2)
=|¢(V")—Pz+k+2|/[(1‘X)(Po—Pl+k+2)]

=|p7rir = Perir2| /(L= X)(Po = Prsis2)]-

But since k" =k+1,T"<t+k+2<T"+1,and t+k+2>T+150: 0<T"+1—(t+k+2) <
T"—T<1, and:

|Qt/£l+k - Qx'+1+k| <|prri1 = pran |/[(1 = x)(po _P:+k+z)]
=(1-9)v - Vl/[(1 - x)(po _P1+k+2)]
<[V =VI/[A=x)po].-
Adding this term to the right-hand side of (A.11) leads to:
(A12) 10" - 07| < (1+1/(1 = a )V~ VI/[(1 = x) po].
(3) k" =k — 1: The induction of case (1) still holds up to rank k — 1, so:

k-1

Ith - Qr’l < (aw)lel,-?—k - Qt/+k| + z (aoo)jlbt”+j - b1+/|
J=0
and

|Q:’1k - Qr’+k| =|1 - 4’:+k(1) | =|prs1 _Pr+k+1l/[(1 =x)(po _P1+k+1)]

<|Prer—Proas |/[(1 =x)(po _P1+k+1)] <|y"- V'/[(l - x)PO],
because k" =k — 1 requires: 7" +1<t+k+1<T+1; so once again (A12) holds.
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(b) For all ¢ € [min(T", T), max(T", T)), either:
o/ =1,0/"=¢/(1), or ;"=1,0/=v,(),

according to whether 7" > T or 7> T"; the proofs of (a), Cases 2 and 3 respectively, can then be
replicated to finish establishing that (A12) holds for all z € [7 — 1, + o0). Q.E.D.

PROOF OF THEOREM 3.1: (a) Continuity: Note that it suffices to show separately that f(V'")
converges to f(V') for sequences (V") converging to ¥ € I from above and from below. The following
cases must be distinguished.

Case1: T<7—1 It must be that T=T*<7—1,s0 K=K*<int[7] <7, g =0 and:

f(V)=Z§,8/p;+ sE+(y—p).

(L.1) pgs>06(V) > pge,q; for n large enough, pgs > o(V")> pge., so K*" is equal to K;
hence K" =K, so f(V") — f(V) =85*}(V" — V) which yields the result.

(1.2) pge > (V) =pgs.1; equivalently, K* =T* <7 —1. If (V") converges to ¥ from above,
K*" = K*, and one is back in Case 1.1. From here on in the rest of Case 1 it will therefore be assumed
that " < V for all n, which implies that K*" = K* + 1 for n large enough.

(121) K*+1<int[r]; f(V") =ZX2} 8/p; + 85+2(V" — B) converges, as n — + o0, to:

K

Y. 87p, + 8541 pya + 1+ 8(V = B)]
j=0

K
= 2 dp+ 8 -8) (V= B) + 8(V - B)] =/ (V).
Jj=0

(1.22) K* =int[7], so K*"=int[r] +1; since T<7—1, it must be (cf. proof of Theorem 2.1,
subcase B2) that: (Vi€[r—1,T]: Q/>0). Lemma 3.1 then implies that, for large enough n:
(Vte[1—1,T],Q/"> 0). Therefore, T" < v — 1, while on the other hand: V" < V, so T*" > T* = K*
=int[r] > 7 — 1. Definition 2.4 then requires T" = — 1, K" = int[r] = K* = K, and convergence is
again immediate.

Cast 2: 7 — 1 < T < int[]. This implies that K = int[r] > 7 —1, and therefore: V ¢ € [int[7], T], Q/
> 0. Then by Lemma 3.1, for # large enough: V¢ € [int[7], T], Q;" > 0, therefore K" < int[r]. On the
other hand, T>r—1>int[r] -1, so for n large enough, T" > int{r] — 1, K" > int[7] — 1; hence
K" =int[r] = K, and convergence is again immediate.

CASE 3: T > int[r]. This requires: K>1 and 3! T,int[r]<T< T, 07=0.

(3.1) If T& N, or equivalently, Qf_; <0, Q% > 0. By Lemma 3.1, for n large enough, Og-1<0
and Q4 >0, hence K"=K and: B B

K
f(rm) =2 8%p;+ 85 (pg~8po) (1 — x) Qg + 85+ (V" - B)
j=0

which converges to:

K
> 89p;+ 85 (pg—8p) (1 - x)Qk + 8K (V= B) = f (V).
j=0

(3.2) If TeN, equivalently, Q% =0; if (V") converges from above, it is easy to verify (by
induction) that Vr€[r—1,T),Q;"> @/, in particular: Q' > Q% =0. Moreover, Lemma 3.1 still
implies, for n large enough: QF | <0; therefore K" = K, which brings us back to Case 3.1. From
here on, it will be assumed that (Vn, V" < V), implying that Q% < 0. But since K+ 1> 7: Qk+1>
Qk =0, hence by Lemma 3.1, for n large enough: Q¢,; > 0. Thus K" = K +1, and: B

K

f(V") = Z 8’E+8L(+1QL"+1(1 - x)(PL(+1 _SPo) +8£+2(V" —ﬂ)
Jj=0



76 ROLAND BENABOU

which converges to:

K

Z 8pr- + 8K+1[FL{+1 +Qk+1(1- x)(Pge1—08py) + 3(V-p)]
Jj=0

K
= X 8p+ 8K V=B — (1-x)(p, —Pk+1)¥x (Qk+1)]-
j=0

Since Yx (Qf 1) = Qk = 0, this last expression is equal to f).

Case 4: T=int[r]. Equivalently: Qingr)=0. If V" converges to V from above, Q% 1 >0, so
K" <int[r]; moreover, T= int[7] > 7~ 1, which requires: T* > 7 — 1, hence T*">7—1,T">7—
L, K" > int[r]. Thus K" = int[r] = K, and the result is immediate. Now if V" converges from below,
then for n large enough, K" = int{r] + 1=K+ 1, and the proof is the same as in Case 32. Q.E.D.

(b) Fixed point: By (22), for all VeI = [(po —8B)/(1 - 8), po/(1 — &)]:

) <[(1-8541) /(1= 8)] pp + 85+ 1V < po /(1 — 8).
By construction, f(V) is the payoff obtained by the firm in the continuation value game under its

optimal strategy y €% (given that customers play ¢’ € #). It is therefore at least equal to the payoff
received by adjusting in state 0, given ¢ €F (note that g§ = ():

F(V)>po+8(V=B)>po+8(po~B)/(1-8)=(po—8)/(1-8).

Thus f is continuous and maps I into itself, hence the result. Q.E.D.

PROOF OF THEOREM 3.2: Let there be two e%uilibria with initial firm valuations V' and V?—in
short ¥, V2—with V! > V2, Then a(V?) <o(Vh), ®(V'?) < &(V'1), hence T(V*)> T(V'), and by a
straightforward induction: Vre[r—1, + 0): Q7 y1 > O/ 2, from which follows: (VieR,: g/ 11>
q; v2) where g/ ,,, j € {1,2}, denotes speculators’ strategy in the equilibrium with firm valuation V7,

is implies in turn: T' = T(V'!) < T(V,) = T2, and thus K' < K2, In particular:

Vk<K!, O=qgin=gqf 2 and  gf1 11> gfr 2> 0.
Hence: gg1 ,1(8py — px1) > gfa 2(8p, — Px1), because 8p, — px1 > 0 unless K < r, but then Gk 0

= 0. Therefore, (22) and V! = f(I') imply:

K!
yl_ B= [ Z 8"pk +8L(‘qL’(1,V1 1- x)(pL(l —8py) — le/(l —3L(‘+1)
k=0

K!
< [ Y 8*p + 88 gp (1 - x)(pgt = 8py) — 3]/(1 - 8K1+1),
k=0

The last term is the firm’s payoff (minus B) under a strategy of periodic adjustments in state K (with
probability one), given speculators’ strategy g1,2 € #. By definition, it is no greater than its payoff
from the o}z)timal strategy given g}2 €%, ie., the equilibrium payoff (minus B) V2 — B. Hence
V! — B < V2 — B, a contradiction. Q.E.D.

APPENDIX 4

PROOF OF PROPOSITION 4.1: Some preliminary results on the firm’s intertemporal payoff under
various strategies—in the presence and in the absence of speculation—must first be established. For
all k €N, let M(k) denote this payoff when speculators play their equilibrium strategies ¢ €F but
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the firm adjusts its price periodically (with probability one) when state k is reached:

k—1
(A13) M(k)=| X 8(p+q/(1-x)(p,—8p41))
j=0

+8%(pe+ gt (1 —x)(pr—8p0)) —B]/(l — 81y,

Since ¢/ =0 for j<K and Vo—f(Vo), (22) can be rewritten: ¥, — B = M(K). Thus periodic
adjustment at K is optimal (given ¢’ €%'). Moreover:

(A14) V k<K, M(k)<M(K),with strict inequality for k < K,

because adjustment in a state k <K is strictly suboptimal (given ¢ €%) since V;—B— V41 <
(1 = x)(po — Px+1)Q% <0 by Lemma 2.A(i) and Definition 2.5. Consider now the limiting no-storage
case (x = 1), with all variables superscripted by “ns”. The system (13)—(14) is then identical to what
it would be with x € (0,1) but a > 8S (i.e. 7= + o0):
(13) V>0, ¢/=0.
(14) Vt>0, ¢,=0, g=1, or q,€[0,1], according to whether

=B=V11<0, B=B-V >0 or Vo—B-V, =0
Indeed, x =1 or a > 85 both mean that no one can ever store profitably. Therefore, when x = 1, the
game still has a unique solution, which is the same as when « > 88, and yields an equilibrium payoff
Vo' to the firm. It is easily seen, from Definitions 2.1 and 2.4, that this equilibrium is also the limit of

the solutions with a« <&S and x tending to 1 from below, and that: T" =T" = T" K" =K"=
K™, For this equilibrium, (A14) yields:

(A15)  Vk<K™,  M"(k)<M™(K™),

with strict inequality for k£ < K™, where M"S(k) is the firm’s payoff to periodic adjustment in state k,
gwen that customers never store. Note that M"S(k) is given by (A13) with all g/’s replaced by zero;
in particular, M(K) < M"(K), with equality if and only if g = 0. It will now “be shown that:

(A16) K< K™ <K*
Indeed, if K™ < K: M"(K™)= M(K") < M(K) < M™(K), contradicting (A15). Moreover:
pres 1= (1= 8)(Vg" = B) = (1~ 8) M™ (K™)
> (1-8)M™(K) > (1-8)M(K) =0=pr,1,

implying T™ < T*, and K" < K*. Proposition 4.1 can now be proven.

(i) When K™ <int[7], then K< K™ 1nt[1-] by (A16) and two cases arise: (a) K<int[7]—
implying T < 7 — 1, which by definition requires 7= 7* < 7 — 1. Hence K = K* = K", by (Al6). (b)
K =int[7] < 1; since K" < int[7], (A16) then requires K = K", hence:

Prog1 =1 —-8)M"(K"™)=(1-8)M"(K)=(1-8)M(K)=06=pp1,

because X < 7 implies g = 0. Thus: 7" = T*, K*= K" =K. Q.E.D.
(i) When K" > int[7], assume that K <int[r]; as in (a) above, this implies K = K*; but (A16)
then requires K > K" > int[7], a contradiction. _ Q.E.D.
(iii) Results directly from Proposition 2.2, since K > K* > K™, Q.E.D.

PROOF OF PROPOSITION 4.2: Define for all keN: Y, =p, + ¢/l — x)[pr — 6(qepo +
= 4k ) Pr+1)]- Since the price is adjusted with probability g, in state k, and gz =1, (12) yields:

EkK-o 8_ (1 _‘Io) - (1 —q-1) Y —
1 _8):'/('(-0 sk(l _‘Io) (= ge-1) gk ’

where ¢g_; =0 by convention. Similarly, defining W, (resp. Wy') as the average expected present value
of speculators’ (resp. nonspeculators’) utility in state zero (with no initial stocks) and, for all k € N:

(A17) Vo—-B=
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Z,=S— P, +qi{—a— P +8[q.Py+ (1 —q)P,.1]}, one can compute:
Zkl?-o_“;k(1 —q) (1 —q_1)Z

1 _SZkK-o sk(l —4q0) - (1= qeo1) gk ’

S ak_(l —qo) (1 —q_1)(S—P)
1 ——82,{‘_0 ak(l =q0) (1= qe_1) gk

Total intertemporal social welfare (net of the first adjustment cost) is SWy = xWy + (1 — x)Wy + 1,

- B, or:

A18) W=

A19) W=

TR 08 (1-q) - A-q_D[x(S-P)+(1-x)Z, + ¥, ] - ﬂ
1_82k 08"(1 qo) (L= gy- l)qk
But, forall keN: x(S—P)+(1—-x)Z, + Y, =S—c— (1 —x)g{(a + c(1 —8)), and:

SWo =

1-9) E 8"(1—%)---(1 = qk-1)

=1+ Zsk(l_‘lo) (l_qlﬁl)
k=1

K

-2 & (1—q) - (- qo1)(1— g+ qi)
k=0

=1—828k(1_q0)"'(1_qk—1)qk7 so that:

k=0
S—c B+(A—-x)(a+c(1-8 Z k(1 - 1-¢g..1)4q.
(A20) SWy = ( )( ( k)) —08"(1-¢q)---(1-¢g l)qk’
1-5 1_8):k-o‘s (1-9) - A-g-1)%
which, given that g, = 0 for k < K, completes the proof. Q.E.D.

APPENDIX 5

PROOF OF THEOREM 5.2:

CLAIM 1: All eigenvalues of M have modulus no greater than 1. Indeed, for any complex matrix
A =(a;j)1<i, j<n (cf. Varga (1965, p. 17)):

N
|v|<max< Z|ai,|,1<j<1v}

i=1

where v is any eigenvalue of 4. Since the second term is equal to 1 for 4 = M (with N = K + 1), and
h* - M = h*, M has radius of convergence equal to one.

CLAIM 2: M is noncyclic, or primitive (i.e. it has only one eigenvalue equal to its radius of
convergence) if and only if g, < 1.
The proof rests on the following theorem (cf. Varga (1965, p. 44)):

THEOREM (FROBENIUS): An irreducible square matrix A with nonnegative coefficients is cyclic of
index n(A) (i.e. has n(A) eigenvalues with modulus equal to its radius of convergence), where n(A) is
the greatest common denominator of the differences in successive degrees appearing with nonzero
coefficients in its characteristic polynomial.

The matrix M has nonnegative elements. By definition (V ‘arga (1965, p. 20)) it is irreducible if and
only if it has a strongly connected graph, ie., for any pair (i, j) € {1,..., K+ 1}? there exists a
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sequence (ig=1i,1i;),(iysd2)s-.5(iysin.1 =j) such that the corresponding coefficients of M are
nonzero (this will be denoted as i ~j). By definition of K, for any i<K,m, ,,;=1-¢;_1>0,
therefore i ~ j for any (i, j) with j>i. Moreover, mg,;; =1, so i~ 1 for all i; but 1~ for all
j > 1, hence the result. Let us now compute from (25) the characteristic polynomial of M:

G(X)=— XK1 4 xKgo+ XK1 (1—gp) gy +
"+ X(1-q0) - (1 -gg-2)qr-1+ (1= 40) -~ (1~ qr-1)-
Moreover, since g, =0 when k<K, g, € (0,1) if K<k <K, and gg=1:
G(X)=-xK+14 g xK-K
+(1_‘II_<)[X'?_K—1‘IK+1+ XE_K_Z(I_‘IKH)‘IL(H"'

c+(1—gge1)(L—ggea) - (1 _41?—1)]~

If 0 < gx < 1,G(X) has nonzero coefficients on K—K and K— K—1, so n(M) =1 by Frobenius’
Theorem; if g, =1 (K=K), then n(M) = K + 1, hence Claim (2).
To conclude the proof of the theorem, let gx <1, and consider the hyperplane

L= {zERK+1|ZK+1 =O}.
For any probability distribution h, h — h* € L. Moreover, [h — h - M] maps L into itself, therefore:
VheRX*l  3yeL, VneN, |h-M"—h*<B"y

where B is the radius of convergence of M’s restriction to L. But, since A* & L, Claims 1 and 2
imply: |B| < 1, hence the result. Q.E.D.

PROOF OF PROPOSITION 5.3: With probability h{’: the firm is in state k; log(P}") then increases by
zero with probability 1 — g, and by log[(1 + #)**!] with probability g,; thus:

E*[1og( P (1 +1)/PN(1))] /log(1 + )
= f hEq(k+1)

k=0

K
Z (1 —q0)~"(1 —qk—l)qk(k+1)]/H=E[f]/H=l~ Q.E.D.
k=
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