Technical Appendix for "Willpower and Personal Rules" by Roland Bénabou and Jean Tirole

Proof of Proposition 1. Consider first the weak type's probability of perseverance at date 1.

Pooling: $q_1 = 1$. Then $\rho_2^+ = \rho_1$, while ρ_2^- can be any $\rho' \leq \rho$. Optimality in (3) then requires $\rho_1 \geq \rho_2^* > \rho'$, otherwise the right-hand side would be zero. Let therefore $\rho_1 > \rho_2^*$ (leaving aside the measure-zero case where $\rho_1 = \rho_2^*$). Given that $c/\beta_L < C(\lambda)$, this is indeed an equilibrium.

Semi-separation: $q_1 \in (0, 1)$. This implies $\rho_2^+ \in (\rho_1, 1)$ and $\rho_2^- = 0$. Furthermore, (3) must now hold with equality, $c/\beta_L = B - b + \delta \lambda \left[V_2^L(\rho_2^+) - a \right]$. This can only occur if

$$\rho_2^+ \equiv \frac{\rho_1}{\rho_1 + (1 - \rho_1)(q_1 + (1 - q_1)(1 - \lambda))} = \rho_2^*, \tag{A.1}$$

requiring $\tilde{\rho}_1(\lambda) < \rho_1 < \rho_2^*$, and if the mixing probability $p_2^* \equiv p_2(\rho_2^*)$ that will result in period 2 satisfies $c/\beta_L = B - b + \delta \lambda p_2^*(b-a)$. This condition and the one above uniquely determine q_1 and p_2^* in [0, 1] as given in Proposition 1.

Separation: $q_1 = 0$. This implies again that $\rho_2^- = 0$, and thus one must have $c/\beta_L \ge B - c + \delta \left[V_2^L(\rho_2^+) - a \right] = V_2^L(\rho_2^+) - a$. With $c/\beta_L < C(\lambda)$ this can only happen for $\rho_2^+ < \rho_2^*$, which means that $\rho_1 < \tilde{\rho}_1(\lambda)$.

Finally, we turn to the individual's task selection in period 1. For $\rho_1 \ge \rho_2^*$ both types choose P with probability 1, so it is optimal to select W. Indeed, this yields B - c in period 1 and $\delta \left[\rho_1(B-c) + (1-\rho_1)b\right]$ in period 2, against a/γ in period 1 and the same expected payoff in period 2 if NW is chosen instead (there is then no new information, so $\rho_2 = \rho_1$ and W is chosen in period 2). Consider now the case where $\tilde{\rho}_1(\lambda) < \rho_1 < \rho_2^*$. Choosing W rather than NW then leads to expected net gains of Δ_1 in period 1 and Δ_2 in period 2, where:

$$\Delta_1 \equiv \rho_1 \left(B - c - a/\gamma \right) + (1 - \rho_1) \left[q_1 \left(B - c \right) + (1 - q_1) b - a/\gamma \right]$$
(A.2)

is increasing in ρ_1 , both directly and through q_1 , and the same is true for

$$\begin{split} \Delta_2/\delta &\equiv \rho_1 \left[p_2^* (B-c) + (1-p_2^*) a \right] + \\ &\quad (1-\rho_1) \left\{ \left[q_1 + (1-q_1)(1-\lambda) \right) \right] \left[p_2^* b + (1-p_2^*) a \right] + (1-q_1)\lambda a \right\} - a \\ &= p_2^* \left\{ \rho_1 (B-c-a) + (1-\rho_1) \left[q_1 + (1-q_1)(1-\lambda) \right] (b-a) \right\}. \end{split}$$
(A.3)

By continuity, the total gain $\Delta_1 + \Delta_2$ positive just below $\rho_1 = \rho_2^*$. Therefore, the choice between W and NW in period 1 is indeed governed by a cutoff $\rho_1^* < \rho_2^*$. It is ambiguous, on the other hand, whether ρ_1^* is greater or smaller than the threshold $\rho_1 = \tilde{\rho}_1(\lambda)$ where $q_1 = 0$.

Bayesian Updating in the Two-Cost Case. Let us denote as $q^i(\rho, c)$ the probability with which type i = H, L plays P when confronted with cost $c \in \{c_H, c_L\}$ in the W activity in period 1, and given prior beliefs $\rho_1 = \rho$. Following a recall of the first-period cost $\hat{c} = c_H$, Bayes' rule implies:

$$\frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} = \left(\frac{\rho}{1-\rho}\right) \left(\frac{(1-\pi)q^H(\rho,c_H) + \pi(1-\nu)q^H(\rho,c_L)}{(1-\pi)q^L(\rho,c_H) + \pi(1-\nu)q^L(\rho,c_L)}\right),\tag{A.4}$$

$$\frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} = \left(\frac{\rho}{1-\rho}\right) \left(\frac{(1-\pi)\left(1-q^H(\rho,c_H)\right) + \pi(1-\nu)\left(1-q^H(\rho,c_L)\right)}{(1-\pi)\left(1-q^L(\rho,c_H)\right) + \pi(1-\nu)\left(1-q^L(\rho,c_L)\right)}\right), \quad (A.5)$$

where $\hat{\rho}_2^+$ and $\hat{\rho}_2^-$ denote posterior after the events P and G respectively. Similarly, following a recalled cost $\hat{c} = c_L$:

$$\frac{\rho_2^+}{1-\rho_2^+} = \left(\frac{\rho}{1-\rho}\right) \left(\frac{q^H(\rho,c_L)}{q^L(\rho,c_L)}\right),\tag{A.6}$$

$$\frac{\rho_2^-}{1-\rho_2^-} = \left(\frac{\rho}{1-\rho}\right) \left(\frac{1-q^H(\rho, c_L)}{1-q^L(\rho, c_L)}\right).$$
(A.7)

These expressions can be simplified once it has been shown that $q^H(\rho, c_L) = 1$ and $q^L(\rho, c_H) = 0$ are dominant strategies, yielding the expressions in footnotes 32 and 33; in particular, $\rho_2^- = 0$. Note that the only case in which a posterior is undefined is that of $\hat{\rho}_2^+$ when $\nu = 1$ and the equilibrium calls for both types to play G when $c_1 = c_H$ (rules R_0, R_2 and R_{02}). Beliefs following the zero-probability event ($\hat{\sigma} = P$, $\hat{c} = c_H$) then have to be considered, as well as refinements thereof.

Proof of Propositions 2 and 3. We derive here the necessary and sufficient conditions under which each rule can be sustained in equilibrium, for the general case $\nu \in (0, 1)$. We then obtain the results stated in the text by: a) letting ν tend 0 and to 1 in the formulas; b) additionally, examining the existence (and robustness to the Cho and Kreps (1987) criterion) of other equilibria (R_0, R_2 , or R_{02}) that may be sustained through off-the-equilibrium-path beliefs when $\nu = 1$. (Recall that there are no unexpected events for any $\nu < 1$).

1) When is R_0 (that is, $q^H = q^L = 0$) an equilibrium in period 1? Under R_0 the updating rules imply $\rho_2^+ = \hat{\rho}_2^+ = 1$, $\rho_2^- = 0$ and

$$\frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} = \left(\frac{\rho_1}{1-\rho_1}\right)\chi,\tag{A.8}$$

where

$$\chi \equiv \frac{1 - \pi}{1 - \pi\nu} = \Pr\left[c = c_H \,|\, \hat{c} = c_H\right] \tag{A.9}$$

represents the "reliability" or "credibility" of ex-post excuses. The optimality conditions (9)-(10),

together with the previously computed values of V_2^i , now require that:

$$\frac{c_H}{\beta_H} \geq B - b + \delta \left(\phi - V_2^H(\hat{\rho}_2^-) \right), \tag{A.10}$$

$$\frac{c_L}{\beta_L} \geq B - b + \delta\nu \left(b - a\right) + \delta(1 - \nu) \left(b - V_2^L(\hat{\rho}_2^-)\right).$$
(A.11)

Let us therefore define $\bar{\rho}_1$ as the value of ρ_1 which leads to the posterior $\hat{\rho}_2^- = \rho_2^*$ in (A.8):

$$\bar{\rho}_1 \equiv \frac{\rho_2^*}{\rho_2^* + (1 - \rho_2^*)\chi}.$$
(A.12)

Note that $\bar{\rho}_1 > \rho_1^*$ and that $\bar{\rho}_1$ is decreasing in χ . The equilibrium conditions are met when either (a) or (b) below holds:

a) $\rho_1 < \bar{\rho}_1$ and

$$\frac{c_H}{\beta_H} \geq B - b + \delta (\phi - a) = C_H,$$

$$\frac{c_L}{\beta_L} \geq B - b + \delta (b - a) = C_L.$$

b) $\rho_1 > \bar{\rho}_1$ and

$$\frac{c_L}{\beta_L} \ge B - b + \delta\nu \left(b - a\right)$$

• For $\nu = 0$ we therefore find that R_0 is an equilibrium in all of Regions I to IV for $\rho_1 > \bar{\rho}_1$, and in Region II for every value of ρ_1 . As $\nu \to 1$, note that $\chi \to 1$ and thus $\bar{\rho}_1 \to \rho_2^*$. Consequently, R_0 is a limit equilibrium only in Regions IV (for $\rho_1 > \bar{\rho}_1$) and II (for any ρ_1). When ν is exactly equal to 1, however, $\hat{\rho}_2^+$ is unconstrained except by the monotonicity requirement, $\hat{\rho}_2^+ \ge \rho_1 = \hat{\rho}_2^-$. By choosing $\hat{\rho}_2^+ = \rho_1$, or even slightly higher, one can thus always reduce the first equilibrium condition (9) to $c_H/\beta_H \ge B-b$, which holds automatically. Thus (A.10) is no longer a requirement, meaning that R_0 is now an equilibrium as long as $c_L/\beta_L \ge C_L$. For $\rho_1 < \rho_2^*$ in Region IV, however, it fails the Cho-Kreps criterion. Indeed: (i) playing P when $c = c_H$ is strictly dominated for type β_L , by Assumption 8; (ii) with $\nu = 1$ the event ($\sigma = P$, $c = c_H$) is perfectly observable by the period-2 self; (iii) type β_H will gain if deviating to P when $c = c_H$ identifies it as the strong type, resulting in a play of W rather than NW in period 2.

2) When is R_1 (that is, $q^H = q^L = 1$) an equilibrium in period 1?

Under R_1 the updating rules imply $\rho_2^+ = \rho_1, \ \rho_2^- = \text{any } \rho' \le \rho_1, \ \hat{\rho}_2^- = 0$ and

$$\frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1}{1-\chi}\right),\tag{A.13}$$

where χ was defined in (A.9). The equilibrium conditions (9)-(10) now take the form:

$$\frac{c_H}{\beta_H} \leq B - b + \delta \left(V_2^H(\hat{\rho}_2^+) - a \right),$$

$$\frac{c_L}{\beta_L} \leq B - b + \delta \nu \left(V_2^L(\rho_1) - V_2^L(\rho') \right) + \delta(1 - \nu) \left(V_2^L(\hat{\rho}_2^+) - a \right)$$

Given Assumption 6, the first condition requires that $c_H/\beta_H \leq B - b + \delta(\phi - a) = C_H$ and $\hat{\rho}_2^+ \geq \rho_2^*$. Define therefore $\underline{\rho}_1$ as value of ρ_1 which leads to the posterior $\hat{\rho}_2^+ = \rho_2^*$ in (A.13):

$$\underline{\rho}_1 \equiv \frac{\rho_2^*}{\rho_2^* + (1 - \rho_2^*)/(1 - \chi)}.$$
(A.14)

Note that $\underline{\rho}_1 < \rho_2^*$, and that $\underline{\rho}_1$ is decreasing in χ . We must have $\rho_1 > \underline{\rho}_1$, so the second equilibrium condition takes the form:

$$\frac{c_L}{\beta_L} \le B - b + \delta\nu \left(V_2^L(\rho_1) - V_2^L(\rho') \right) + \delta(1 - \nu) \left(b - a \right).$$
(A.15)

For $\rho_1 > \rho_2^*$, it can be met with $\rho' \leq \rho_1$ as long as

$$\frac{c_L}{\beta_L} \le B - b + \delta \left(b - a \right) = C_L$$

For $\rho_1 \in (\underline{\rho}_1, \rho_2^*)$ the second term in (A.15) is zero, so the requirement becomes:

$$\frac{c_L}{\beta_L} \le B - b + \delta(1 - \nu) \left(b - a\right).$$

To summarize, first it must be that $c_H/\beta_H \leq C_H$. Second, when $c_L/\beta_L < B-b+\delta(1-\nu)$ (b-a) this equilibrium exists for all $\rho \in (\underline{\rho}_1, 1)$; when $B-b+\delta(1-\nu)$ $(b-a) < c_L/\beta_L < B-b+\delta$ (b-a) it exists for all $\rho \in (\rho_2^*, 1)$. In all other cases it does not exist.

• In particular, when $\nu = 0$ the equilibrium exists only in Region III, for $\rho_1 > \underline{\rho}_1$. When $\nu = 1$, implying $\underline{\rho}_1 = 0$, it exists in Region III for $\rho > \rho_2^*$.

3) When is R_2 (that is, $q^H = 0$, $q^L = 1$) an equilibrium in period 1?

Under R_2 the updating rules imply $\rho_2^+ = \rho_1, \rho_2^- = \text{any } \rho' \leq \rho_1$ and $\hat{\rho}_2^+ = \hat{\rho}_2^- = \rho_1$. The equilibrium conditions (9)-(10) now take the form $c_H/\beta_H \geq B - b$, which always holds, and

$$\frac{c_L}{\beta_L} \le B - b + \delta \nu \left(V_2^L(\rho_1) - V_2^L(\rho') \right).$$

This requires that $\rho_1 > \rho_2^* > \rho'$; since $\rho' \leq \rho_1$ is unconstrained, only the first of these two inequalities matters. Finally, it must be that:

$$\frac{c_L}{\beta_L} \le B - b + \delta\nu \left(b - a\right).$$

• With $\nu = 0$, R_2 is therefore never an equilibrium. With either $\nu \to 1$ or $\nu = 1$, it is an equilibrium for $c_L/\beta_L \leq C_L$ (Regions I and III), provided that $\rho_1 > \rho_2^*$; note that in this equilibrium (9) is not binding when $\nu < 1$, and thus a fortiori not when $\nu = 1$.

4) When is R_3 (that is, $q^H = 1$, $q^L = 0$) an equilibrium in period 1?

Under R_3 the updating rules imply $\rho_2^+ = \hat{\rho}_2^+ = 1$, $\rho_2^- = \hat{\rho}_2^- = 0$. The equilibrium conditions (9)-(10) now take the form:

$$\frac{c_H}{\beta_H} \leq B - b + \delta (\phi - a) = C_H,$$

$$\frac{c_L}{\beta_L} \geq B - b + \delta (b - a) = C_L.$$

• Thus, whether for $\nu = 0$ or $\nu = 1$, R_3 is an equilibrium in Region IV, for all values of ρ_1 .

5) When is R_{02} (that is, $q^H = 0$, $q^L \in (0, 1)$) an equilibrium in period 1? Under R_{02} the updating rules imply $\rho_2^- = 0$ and

$$\frac{\rho_2^+}{1-\rho_2^+} = \frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1}{q^L}\right),$$
$$\frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1-\pi}{1-\pi+\pi(1-\nu)\left(1-q^L\right)}\right).$$

Conditions (9)-(10) now take the form:

$$\frac{c_H}{\beta_H} \geq B - b + \delta \left(V_2^H(\hat{\rho}_2^+) - V_2^H(\hat{\rho}_2^-) \right),$$
(A.16)
$$\frac{c_L}{\beta_L} = B - b + \delta \nu \left(V_2^L(\rho_2^+) - a \right) + \delta (1 - \nu) \left(V_2^L(\rho_2^+) - V_2^L(\hat{\rho}_2^-) \right).$$
(A.17)

The second one cannot hold (except with measure zero) unless either ρ_2^+ or $\hat{\rho}_2^-$ equals ρ_2^* . Case 1: $\rho_2^+ = \rho_2^*$, which uniquely defines q^L as long as $\rho_1 < \rho_2^*$. Conditions (9)-(10) become:

$$\frac{c_H}{\beta_H} \geq B - b + \delta p_2(\rho_2^*) (\phi - a),$$

$$\frac{c_L}{\beta_L} = B - b + \delta p_2(\rho_2^*) (b - a).$$

Abbreviating $p_2(\rho_2^*)$ as p_2^* , the second condition yields $p_2^* = (c_L/\beta_L - B + b) / (\delta(b-a))$, so the equilibrium requirements finally become:

$$\frac{c_L}{\beta_L} \leq B - b + \delta (b - a) = C_L, \tag{A.18}$$

$$\frac{c_H}{\beta_H} \geq B - b + \left(\frac{c_L}{\beta_L} - B + b\right) \left(\frac{\phi - a}{b - a}\right). \tag{A.19}$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane, the boundary for the latter inequality is the line \mathfrak{L}_1 , with slope $(\phi - a)/(b - a)$, that goes from the point (B - b, B - b) to the point $(B - b + \delta (b - a), B - b + \delta (\phi - a)) = (C_L, C_H)$, thus separating regions III⁻ and III⁺ as indicated on Figure 4.

Case 2: $\hat{\rho}_2^- = \rho_2^*$, which by the updating rules uniquely defines q^L as long as

$$\rho_2^* < \rho_1 < \frac{\rho_2^*}{\rho_2^* + (1 - \rho_2^*)\chi} = \bar{\rho}_1.$$
(A.20)

The equilibrium conditions then become:

$$\begin{array}{ll} \frac{c_{H}}{\beta_{H}} & \geq & B - b + \delta \left(1 - p_{2}^{*} \right) \left(\phi - a \right), \\ \frac{c_{L}}{\beta_{L}} & = & B - b + \delta \left[\nu + \left(1 - \nu \right) \left(1 - p_{2}^{*} \right) \right] \left(b - a \right). \end{array}$$

The latter yields: $1 - p_2^* = \left[\left(c_L/\beta_L - B + b\right)/\left(\delta\left(b - a\right)\right) - \nu\right]/\left(1 - \nu\right)$ as long as

$$B - b + \nu \delta(b - a) < c_L / \beta_L < B - b + \delta(b - a) = C_L.$$

The first condition then requires:

$$\frac{c_H}{\beta_H} \ge B - b + \left(\frac{c_L/\beta_L - B + b - \nu\delta(b - a)}{1 - \nu}\right) \left(\frac{\phi - a}{b - a}\right). \tag{A.21}$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane, the boundary for the second one is the line \mathfrak{L}_2 , with slope $(\phi - a)/[(1 - \nu)(b - a)]$, that goes from the point $(B - b + \delta\nu(b - a), B - b)$ to the point $(B - b + \delta(b - a), B - b + \delta(\phi - a))$.

• For $\nu = 0$, R_{02} therefore exists in Regions I and III⁺ for $\rho_1 < \rho_2^*$ (Case 1) as well as for $\rho_2^* < \rho_1 < \bar{\rho}_1$ (Case 2), and thus for all $\rho_1 < \bar{\rho}_1$. As $\nu \to 1$ we have $\bar{\rho}_1 \to \rho_2^*$, so it exists in Regions I and III⁺ for $\rho_1 < \rho_2^*$ (Case 1). When ν is exactly equal to 1, $\hat{\rho}_2^+$ is again unconstrained except by the monotonicity requirement, $\hat{\rho}_2^+ \ge \rho_1$. Case 2 is still inapplicable since $\hat{\rho}_2^- = \rho_1$, while in Case 1 one can again choose $\hat{\rho}_2^+$ so as to reduce (9) to $c_H/\beta_H \ge B - b$, which always holds. The only binding equilibrium condition is then (A.18), together with $\rho_1 < \rho_2^*$ which is required for $\rho_2^+ = \rho_2^*$ to have a solution in q^L . Thus R_{02} exists in all of Regions I and III when $\rho_1 < \rho_2^*$. In the latter, however, it fails the Cho-Kreps criterion; the proof is identical to that given earlier to eliminate R_2 from Region IV when $\rho_1 < \rho_2^*$.

6) When is R_{03} (that is, $q^H \in (0,1)$, $q^L = 0$) an equilibrium in period 1? Under R_{03} the updating rules imply $\rho_2^+ = 1$, $\rho_2^- = 0$, $\hat{\rho}_2^+ = 1$ and

$$\frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{(1-\pi)\left(1-q^H\right)}{1-\pi+\pi(1-\nu)}\right) = \chi\left(1-q^H\right) \left(\frac{\rho_1}{1-\rho_1}\right).$$

The equilibrium conditions (9)-(10) now take the form:

$$\begin{aligned} \frac{c_H}{\beta_H} &= B - b + \delta \left(\phi - V_2^H(\hat{\rho}_2^-) \right), \\ \frac{c_L}{\beta_L} &\geq B - b + \delta \nu \left(b - a \right) + \delta (1 - \nu) \left(b - V_2^L(\hat{\rho}_2^-) \right). \end{aligned}$$

The first condition requires that $\hat{\rho}_2^- = \rho_2^*$, which uniquely determines q^H as long as $\rho_1 > \bar{\rho}_1$ defined earlier in (A.12). Then, $\phi - V_2^H(\hat{\rho}_2^-) = (1 - p_2^*)(\phi - a)$, or $1 - p_2^* = (c_H/\beta_H - B + b) / (\delta(\phi - a))$, requiring that:

$$c_H/\beta_H < B - b + \delta \left(\phi - a\right) = C_H.$$

The second equilibrium condition then becomes:

$$\frac{c_L}{\beta_L} \ge B - b + \delta\nu \left(b - a\right) + \left(1 - \nu\right) \left(c_H/\beta_H - B + b\right) \left(\frac{b - a}{\phi - a}\right).$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane, the boundary for this inequality is again the line \mathfrak{L}_2 , with slope $(\phi - a)/[(1 - \nu)(b - a)]$, that goes from the point $(B - b + \delta\nu(b - a), B - b)$ to the point $(B - b + \delta(b - a), B - b + \delta(\phi - a))$.

• For $\nu = 0$, R_{03} therefore exists in Regions III⁻ and IV for $\rho_1 > \bar{\rho}_1$. For $\nu = 1$, in which case $\bar{\rho}_1 = \rho_2^*$, it exists in Region IV only, for $\rho_1 > \rho_2^*$.

7) When is R_{12} (that is, $q^H = 1$, $q^L \in (0, 1)$) an equilibrium in period 1? Under R_{12} the updating rules imply $\rho_2^+ = \rho_1$, $\rho_2^- = \text{any } \rho' \leq \rho_1$, and

$$\begin{aligned} \frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} &= \left(\frac{\rho_1}{1-\rho}\right) \left(1-q^H\right), \\ \frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} &= \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{(1-\pi)q^H + \pi(1-\nu)}{\pi(1-\nu)}\right). \end{aligned}$$

Conditions (9)-(10) now take the form:

$$\frac{c_H}{\beta_H} = B - b + \delta \left(V_2^H(\hat{\rho}_2^+) - V_2^H(\hat{\rho}_2^-) \right),
\frac{c_L}{\beta_L} \leq B - b + \delta \nu \left(V_2^L(\rho_1) - V_2^L(\rho') \right) + \delta(1 - \nu) \left(V_2^L(\hat{\rho}_2^+) - V_2^L(\hat{\rho}_2^-) \right).$$

The first one requires either Case 1 or Case 2 below.

Case 1: $\hat{\rho}_2^- = \rho_2^*$, which uniquely defines q^H as long as $\rho_1 > \rho_2^*$. Then $1 - p_2^* = (c_H/\beta_H - B + b) / (\delta(\phi - a))$, requiring

$$c_H/\beta_H < B - b + \delta \left(\phi - a\right) = C_H.$$

The second equilibrium condition then becomes:

$$\frac{c_L}{\beta_L} \le B - b + \delta\nu \left(b - V_2^L(\rho') \right) + (1 - \nu) \left(c_H / \beta_H - B + b \right) \left(\frac{b - a}{\phi - a} \right).$$

This can be satisfied with $\rho' \leq \rho_1$ as long as

$$\frac{c_L}{\beta_L} \le B - b + \delta\nu \left(b - a\right) + \left(1 - \nu\right) \left(c_H / \beta_H - B + b\right) \left(\frac{b - a}{\phi - a}\right).$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane, the boundary for the latter inequality is again the line \mathfrak{L}_2 , with slope $(\phi - a)/[(1 - \nu)(b - a)]$, that goes from the point $(B - b + \delta\nu (b - a), B - b)$ to the point $(B - b + \delta (b - a), B - b + \delta (\phi - a))$.

Case 2: $\hat{\rho}_2^+ = \rho_2^*$, which then uniquely defines q^H as long as $\underline{\rho}_1 < \rho_1 < \rho_2^*$. Then,

$$\begin{aligned} \frac{c_H}{\beta_H} &= B - b + \delta p_2^* \left(\phi - a \right), \\ \frac{c_L}{\beta_L} &\leq B - b + \delta \nu \times 0 + \delta (1 - \nu) p_2^* \left(b - a \right). \end{aligned}$$

which uniquely determines p_2^* as long as

$$\frac{c_H}{\beta_H} \leq B - b + \delta(\phi - a) = C_H,$$

$$\frac{c_L}{\beta_L} \leq B - b + (1 - \nu) \left(c_H / \beta_H - B + b \right) \left(\frac{b - a}{\phi - a} \right).$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane the boundary for the latter inequality is the line \mathfrak{L}_3 , with slope $(\phi - a)/[(1 - \nu)\delta(b - a)]$ (same as for \mathfrak{L}_2) that goes from the point (B - b, B - b) to the point $(B - b + \delta(1 - \nu)(b - a), B - b + \delta(\phi - a))$.

• Putting together Cases 1 and 2, we see that when $\nu = 0$ R_{12} exists only in Region III⁺ for $\rho > \rho_2^*$ (Case 1) as well as for $\underline{\rho}_1 < \rho_1 < \rho_2^*$ (Case 2); hence, for all $\rho_1 > \underline{\rho}_1$. When $\nu = 1$ it exists in all of Region III for $\rho > \rho_2^*$ (Case 1).

8) When is R_{13} (that is, $q^H = 1$, $q^L \in (0, 1)$) an equilibrium in period 1? Under R_{13} the updating rules imply $\rho_2^- = \hat{\rho}_2^- = 0$,

$$\frac{\rho_2^+}{1-\rho_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1}{q^L}\right),$$

$$\frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1-\pi+\pi(1-\nu)}{\pi(1-\nu)q^L}\right) = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1}{q^L}\right) \left(\frac{1}{1-\chi}\right).$$

The equilibrium conditions (9)-(10) now take the form:

$$\frac{c_H}{\beta_H} \leq B - b + \delta \left(V_2^H(\hat{\rho}_2^+) - a \right), \frac{c_L}{\beta_L} = B - b + \delta \nu \left(V_2^L(\rho_2^+) - a \right) + \delta(1 - \nu) \left(V_2^L(\hat{\rho}_2^+) - a) \right)$$

The second one cannot hold (except with measure zero) unless either ρ_2^+ or $\hat{\rho}_2^+$ equals ρ_2^* . *Case 1:* $\rho_2^+ = \rho_2^*$, which then uniquely defines q^L as long as $\rho_1 < \rho_2^*$. Since $\hat{\rho}_2^+ > \rho_2^+$ always, the equilibrium conditions then become

$$\frac{c_H}{\beta_H} \leq B - b + \delta \left(\phi - a\right) = C_H,$$

$$\frac{c_L}{\beta_L} = B - b + \delta \left[\nu p_2^* + 1 - \nu\right] (b - a).$$

Hence $p_2^* = [c_L/\beta_L - B + b - \delta(1-\nu)(b-a)] / [\delta\nu(b-a)]$, requiring:

$$B - b + \delta(1 - \nu)(b - a) < c_L/\beta_L < B - b + \delta(b - a) = C_L.$$

Case 2: $\hat{\rho}_2^+ = \rho_2^*$, which then uniquely defines q^L , as long as $\rho_1 < \underline{\rho}_1$ defined in (A.14). Since $\hat{\rho}_2^+ > \rho_2^+$ always, the two conditions then become:

$$\frac{c_H}{\beta_H} \leq B - b + \delta p_2^* (\phi - a),$$

$$\frac{c_L}{\beta_L} = B - b + \delta (1 - \nu) p_2^* (b - a).$$

The latter condition determines p_2^* uniquely, as long as

$$\frac{c_L}{\beta_L} \le B - b + \delta(1 - \nu)(b - a)$$

Finally, the first condition requires

$$\frac{c_H}{\beta_H} \le B - b + \left(\frac{c_L/\beta_L - B + b}{1 - \nu}\right) \left(\frac{\phi - a}{b - a}\right),$$

In the $(c_L/\beta_L, c_H/\beta_H)$ plane, the boundary is again the line \mathfrak{L}_3 , with slope $(\phi - a)/[(1 - \nu)(b - a)]$, that goes from the point (B - b, B - b) to the point $(B - b + \delta(1 - \nu)(b - a), B - b + \delta(\phi - a))$.

• Therefore, when $\nu = 0$, R_{13} exists only in Region III⁻ only for $\rho < \underline{\rho}_1$ (Case 2). When $\nu = 1$ it exists in all of Region III for $\rho_1 < \rho_2^*$ (Case 1).

9) When is R_{01} (that is, $q^H \in (0,1), q^L \in (0,1)$) an equilibrium in period 1? Under R_{01} the updating rules imply $\rho_2^- = 0$ and

$$\frac{\rho_2^+}{1-\rho_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{1}{q^L}\right) \\
\frac{\hat{\rho}_2^+}{1-\hat{\rho}_2^+} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{(1-\pi)q^H + \pi(1-\nu)}{\pi(1-\nu)q^L}\right) \\
\frac{\hat{\rho}_2^-}{1-\hat{\rho}_2^-} = \left(\frac{\rho_1}{1-\rho_1}\right) \left(\frac{(1-\pi)\left(1-q^H\right)}{1-\pi + \pi(1-\nu)\left(1-q^L\right)}\right)$$

Note that $\hat{\rho}_2^+ > \rho_2^+ > \rho_1 > \hat{\rho}_2^-$. The equilibrium conditions are then:

$$\frac{c_H}{\beta_H} = B - b + \delta \left[V_2^H(\hat{\rho}_2^+) - V_2^H(\hat{\rho}_2^-) \right],
\frac{c_L}{\beta_L} = B - b + \delta \nu \left[V_2^L(\rho_2^+) - a \right] + \delta(1 - \nu) \left[V_2^L(\hat{\rho}_2^+) - V_2^L(\hat{\rho}_2^-) \right].$$

The first condition cannot be an equality (except with measure zero in the parameter space) unless either $\hat{\rho}_2^+$ or $\hat{\rho}_2^-$ is equal to ρ_2^* ; in that case, the equality determines at most one suitable p_2^* . The second condition cannot be an equality unless either ρ_2^+ or $\hat{\rho}_2^-$ is equal to ρ_2^* ; in either case, the equality again determines at most one suitable p_2^* . These two values of p_2^* do not coincide, except with measure zero in the $(c_L/\beta_L, c_H/\beta_H)$ space. Thus an equilibrium of this type cannot exist, as no single mixing strategy can make both types indifferent.

To conclude the proofs of Propositions 2 and 3, it just remains to check that the equilibrium indicated in bold in each of the areas of Figures 3 and 4 where multiplicity occurs is the one preferred by the β_H type, and when $b \ge a$ by the β_L type as well. This is straightforward.