Technical Appendix for “Willpower and Personal Rules”

by Roland Bénabou and Jean Tirole

Proof of Proposition 1. Consider first the weak type’s probability of perseverance at date 1.
Pooling: g1 = 1. Then p; = p;, while p; can be any p’ < p. Optimality in (3) then requires
p1 > ps > p/, otherwise the right-hand side would be zero. Let therefore p; > p5 (leaving aside
the measure-zero case where p; = p3). Given that ¢/8; < C()), this is indeed an equilibrium.
Semi-separation: qi € (0,1). This implies p5 € (p1,1) and p, = 0. Furthermore, (3) must now
hold with equality, ¢/8;, = B — b+ 6X [V (p3) — a] . This can only occur if
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requiring p;(A) < p; < ps, and if the mixing probability p5 = pa2(p3) that will result in period 2
satisfies ¢/, = B — b+ 0Ap5(b—a). This condition and the one above uniquely determine ¢; and
p5 in [0, 1] as given in Proposition 1.

Separation: g1 = 0. This implies again that p;, = 0, and thus one must have ¢/f;, > B — c +
§ [V (p3) — a] = Vi (p3 ) — a. With ¢/B1, < C(X) this can only happen for p5 < p3, which means
that p; < p1(A).

Finally, we turn to the individual’s task selection in period 1. For p; > p3 both types choose
P with probability 1, so it is optimal to select W. Indeed, this yields B — ¢ in period 1 and
d[p1(B —c)+ (1 —py)b] in period 2, against a/v in period 1 and the same expected payoff in
period 2 if NW is chosen instead (there is then no new information, so p, = p; and W is chosen
in period 2). Consider now the case where p;(A) < p; < p5. Choosing W rather than NW then

leads to expected net gains of A; in period 1 and As in period 2, where:

Ar=p(B-c—a/ )+ =p)[a(B-c)+1-q)b—a/v] (A.2)

is increasing in p;, both directly and through ¢;, and the same is true for

A2/6 = pilpa(B—c)+(1-p3)a)] +
(1 =p){la + (1= q)(1 = N)][peb + (1 = p3)a)] + (1 — q1)Aa} —a
= p{p(B-c—a)+ {0 -p)la+1-q)d-N](b-0a)}. (A-3)
By continuity, the total gain Ay + Ay positive just below p; = p3. Therefore, the choice between

W and NW in period 1 is indeed governed by a cutoff p] < p5. It is ambiguous, on the other
hand, whether pj is greater or smaller than the threshold p; = p;(\) where ¢ = 0. B



Bayesian Updating in the Two-Cost Case. Let us denote as ¢'(p, c) the probability with
which type i« = H, L plays P when confronted with cost ¢ € {cg,cr} in the W activity in period
1, and given prior beliefs p; = p. Following a recall of the first-period cost ¢ = cy, Bayes’ rule

implies:
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where ,6; and p, denote posterior after the events P and G respectively. Similarly, following a

- (12) (G,
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These expressions can be simplified once it has been shown that ¢ (p,cr) = 1 and ¢"(p, cy) =0

recalled cost ¢ = ¢y, :

are dominant strategies, yielding the expressions in footnotes 32 and 33; in particular, p, = 0.
Note that the only case in which a posterior is undefined is that of ﬁ; when v = 1 and the
equilibrium calls for both types to play G when ¢; = ¢y (rules Ry, Ry and Ry2). Beliefs following
the zero-probability event (6 = P, ¢ = cy) then have to be considered, as well as refinements
thereof.

Proof of Propositions 2 and 3. We derive here the necessary and sufficient conditions under
which each rule can be sustained in equilibrium, for the general case v € (0,1). We then obtain the
results stated in the text by: a) letting v tend 0 and to 1 in the formulas; b) additionally, examining
the existence (and robustness to the Cho and Kreps (1987) criterion) of other equilibria (Ry, Ra,
or Rp2) that may be sustained through off-the-equilibrium-path beliefs when v = 1. (Recall that

there are no unexpected events for any v < 1).
1) When is Ry (that is, ¢/ = ¢ = 0) an equilibrium in period 1?
Under Ry the updating rules imply p; = ﬁ;“ =1, py; =0and

Pz :< p1 )X, (A.8)

1—py L—=py
where
LT Prle=cué=cal (A.9)
= = ric—==c¢ C—=2~¢C¢ .
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represents the “reliability” or “credibility” of ex-post excuses. The optimality conditions (9)-(10),



together with the previously computed values of V3, now require that:

CH

5, = Bob+d(o-1"(). (A.10)
H
;—L > B—b+dv(b—a)+5(1—v)(b—Vi(py)). (A.11)
L

Let us therefore define p; as the value of p; which leads to the posterior p; = p3 in (A.8):

L 2
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Note that p; > p] and that p; is decreasing in x. The equilibrium conditions are met when either
(a) or (b) below holds:

a) p1 < p and

M > B-b+6(¢p—a)=Ch,
B
L > Bobtb(b—a)=Cp
Br

b) py > p; and
cL

BL
e For v = 0 we therefore find that Ry is an equilibrium in all of Regions I to IV for p; > py,

>B—-b+dév(b—a)

and in Region II for every value of p;. As v — 1, note that x — 1 and thus p; — p5. Consequently,
Ry is a limit equilibrium only in Regions IV (for p; > p;) and II (for any p;). When v is exactly
equal to 1, however, f); is unconstrained except by the monotonicity requirement, Z); > p1 =Dy -
By choosing ,6; = py, or even slightly higher, one can thus always reduce the first equilibrium
condition (9) to ¢ /By > B—b, which holds automatically. Thus (A.10) is no longer a requirement,
meaning that Ry is now an equilibrium as long as ¢, /5, > CL. For p; < p3 in Region IV, however,
it fails the Cho-Kreps criterion. Indeed: (i) playing P when ¢ = ¢y is strictly dominated for type
B1, by Assumption 8; (ii) with ¥ = 1 the event (¢ = P, ¢ = cp) is perfectly observable by the
period-2 self; (iii) type S will gain if deviating to P when ¢ = cp identifies it as the strong type,
resulting in a play of W rather than NW in period 2.

2) When is R; (that is, ¢/’ = ¢* = 1) an equilibrium in period 1?7
Under R; the updating rules imply /)2+ =p1, py = any p' < py, p; =0 and

A+
P2 P1 1 > A
= 3 .13
(79 (s A1)

where x was defined in (A.9). The equilibrium conditions (9)-(10) now take the form:




< B-b+s(V(p3) —a),
B
;—LL < B—b+dv V(o) =V (p) +6(1 —v) (Vi (p3) —a).

Given Assumption 6, the first condition requires that ¢y /By < B—b+ (¢ —a)
ﬁ;“ > p5. Define therefore p, as value of p; which leads to the posterior f); = p5 in (A.13):

_ 5
B g =) (A14)

Note that Py < p5, and that pyis decreasing in x. We must have p; > Py SO the second equilibrium

condition takes the form:

L <B—b+6v(VE(p) = Vi(p)) +6(1—v) (b—a). (A.15)
L

For p; > p5, it can be met with p’ < p; as long as

L B _b48(b—a)=Cp.
Br

For p; € (p,,p3) the second term in (A.15) is zero, so the requirement becomes:

L <B-b+51-v)(b—a).
L

To summarize, first it must be that ¢y /By < Ch. Second, when ¢r, /8, < B—b+0(1—v) (b —a)
this equilibrium exists for all p € (p,,1); when B—b+d(1—v) (b—a) <cr/Bp, < B—b+6(b—a)
it exists for all p € (p3,1). In all other cases it does not exist.

e In particular, when v = 0 the equilibrium exists only in Region III, for p; > Py When v =1,
implying p, =0, it exists in Region III for p > p5.

3) When is R, (that is, ¢/ =0, ¢* = 1) an equilibrium in period 1?

Under Rs the updating rules imply p; = p1, p; = any p' < p; and ﬁ;r = py, = p1. The
equilibrium conditions (9)-(10) now take the form cg /By > B — b, which always holds, and

;_L < B —b+dv (Vi(py) — V& (p)) -
L

This requires that p; > p5 > p'; since p' < p; is unconstrained, only the first of these two

inequalities matters. Finally, it must be that:

C—LSB—b—i-&V(b—a).
AL



e With v = 0, Ry is therefore never an equilibrium. With either v — 1 or v = 1, it is
an equilibrium for ¢ /8, < Cr (Regions I and III), provided that p; > p%; note that in this

equilibrium (9) is not binding when v < 1, and thus a fortiori not when v = 1.
4) When is R3 (that is, ¢/ =1, ¢ = 0) an equilibrium in period 1?
Under R3 the updating rules imply p; = ﬁ; =1, py = p; = 0. The equilibrium conditions
(9)-(10) now take the form:

B < B-b+4d(¢p—a)=Ch,
B
L > B-b+d5(b—a)=CL.
Br

e Thus, whether for v =0 or v = 1, R3 is an equilibrium in Region IV, for all values of p;.
5) When is Ry (that is, ¢ =0, ¢ € (0,1)) an equilibrium in period 1?7

Under Rgz the updating rules imply p, = 0 and

i i () (2)
T—p 1-p \T-a)\&
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Conditions (9)-(10) now take the form:

T 2 Bob+a (W08 - v () (A.16)
H
;—LL = B—b+0v(VE(p3) —a) +6(1 —v) (Vi(oF) = Vi(p3)) - (A.17)

The second one cannot hold (except with measure zero) unless either p3 or p, equals p} .

Case 1: p5 = p}, which uniquely defines ¢” as long as p; < p5. Conditions (9)-(10) become:
C *
7o 2 B-b+ip(ph) (60— a),
Bu
c k
== = B-b+opa(p3) (b—a).
AL
Abbreviating pa(p3) as p3, the second condition yields p5 = (cr/B; — B +b) / (6(b— a)), so the

equilibrium requirements finally become:

;_L < B-b+6(b—a)=Cy, (A.18)
L

cH I o—a

Bu = b b+<5L B+b> (b—a)’ (4.19)



In the (cr/Br, cu/By) plane, the boundary for the latter inequality is the line £, with slope
(¢ —a)/(b— a), that goes from the point (B — b, B — b) to the point (B—b+d(b—a),B—b+
5 (¢ —a)) = (Cr,Cp), thus separating regions III™ and IIT" as indicated on Figure 4.

Case 2: p, = p3, which by the updating rules uniquely defines q" as long as

p§ -
p* <p1 < —% = = pP1- A.20
2 1 5 (1 Q)X 1 ( )

The equilibrium conditions then become:

SHo> Bob+6(1—ph)(o—a),

B

;_L = B-b+dv+(1—v)(1—p3)](b—a).
L

The latter yields: 1 —p5 = [(¢r./B, — B+b) /(6 (b—a)) —v]/(1 —v) as long as
B—-b+vib—a)<ecr/Bp<B—-b+d(b—a)=CrL.

The first condition then requires:

;_HZB_b_’_<CL/BL_B+b_V6(b_a)> <¢—a>, (A.21)

H 1—v b—a

In the (cr/Br, cu/By) plane, the boundary for the second one is the line £9, with slope (¢ —
a)/[(1 —v)(b—a)], that goes from the point (B — b+ ov(b — a), B —b) to the point (B — b+
d(b—a),B—b+6(¢p—a)).

e For v = 0, Ro2 therefore exists in Regions I and IIIT for p; < pi (Case 1) as well as for
p5 < p1 < pp (Case 2), and thus for all p; < p;. As v — 1 we have p; — p3, so it exists in Regions
L and IIT* for p; < p4 (Case 1). When v is exactly equal to 1, ﬁ; is again unconstrained except by
the monotonicity requirement, p3 > p;. Case 2 is still inapplicable since p;, = p;, while in Case
1 one can again choose p3 so as to reduce (9) to cy/By > B — b, which always holds. The only
binding equilibrium condition is then (A.18), together with p; < p4 which is required for p3 = p}
to have a solution in ¢”. Thus Rgy exists in all of Regions I and IIT when p; < p5. In the latter,
however, it fails the Cho-Kreps criterion; the proof is identical to that given earlier to eliminate

Ry from Region IV when p; < p5.
6) When is Ro3 (that is, ¢/’ € (0,1), ¢* = 0) an equilibrium in period 1?

Under Rps the updating rules imply p; =1,py =0, ﬁ; =1 and

1 Zg - <1 flm) (il__:i(iﬁi))) =x(1-q") (1f—1p1)




The equilibrium conditions (9)-(10) now take the form:

%E = B-b+5(¢-V"(py)),

H

;_L > B—b+dv(b—a)+5(1-v)(b-V"(p3)).
L

The first condition requires that p, = p4, which uniquely determines ¢” as long as p; > p; defined
carlier in (A.12). Then, ¢ — Vi (53) = (1 — p3)(¢— a), or 1~ pj = (cir/By — B +1) / (6(6 — a)),
requiring that:

CH/5H<B—Z)+5(¢—(I):CH.

The second equilibrium condition then becomes:

- b—a
B—L2B—b—|—5l/(b—a)+(1—V)(CH/BH_B+b)<¢_a>‘

In the (cr/B1, cu/By) plane, the boundary for this inequality is again the line £o, with slope
(¢ —a)/[(1 —v)(b—a)], that goes from the point (B — b+ dv(b—a), B —b) to the point (B — b+
d(b—a),B—b+6(¢p—a)).

e For v = 0, Ry3 therefore exists in Regions III™ and IV for p; > p;. For v = 1, in which case

p1 = ps, it exists in Region IV only, for p; > p5.

7) When is Rj2 (that is, ¢/’ =1, ¢ € (0,1)) an equilibrium in period 1?

Under Rjs the updating rules imply p; = py, p; = any p < py, and

P < . >U—@H%

1 —py 1—p
Py _ < 2 ><(1—7r)qH+7r(1—V)>
1—pg 1—p (1l —v)

Conditions (9)-(10) now take the form:

;—f; = B-b+06 (V' (p5) - Vi (p3)) .
%ﬁﬁ B —b+ v (Vi (py) = Vo' () +8(1 —v) (V3 (p3) — V&' (p3)) -

The first one requires either Case 1 or Case 2 below.

Case 1: py = p5, which uniquely defines ¢/ as long as p; > p3. Then 1 —p} = (cy/By — B +b)/
(6(¢ — a)), requiring
CH/ﬁH <B—b+5(q§—a) =Cy.



The second equilibrium condition then becomes:

;—LL <B-b+6év(b—V&()) +(1—v)(cu/By — B+b) (Z:Z)

This can be satisfied with p’ < p; as long as

cr b—a
5—LgB—b+(5u(b—a)+(1—V)(CH/ﬁH_B+b)<¢_a>'

In the (cr/B1, ca/By) plane, the boundary for the latter inequality is again the line £9, with
slope (¢ —a)/[(1 — v)(b — a)], that goes from the point (B — b+ 0v (b—a),B — b) to the point
(B=b+d6(b—a),B—b+0d(¢—a)).

Case 2: py = p3, which then uniquely defines ¢” as long as p; < p1 < p3. Then,

L = B-b+ips(6-a),

Bu

;—L < B-b+dvx0+5(1—v)p;(b—a).
L

which uniquely determines p3 as long as

H < B-b+6(¢p—a)=Ch,

B
;_LL < B—b+(1—V)(CH/5H—B+b)<(I;:Z>‘

In the (c./Br, ca/By) plane the boundary for the latter inequality is the line £3, with slope
(¢ —a)/[(1 —v)d(b— a)] (same as for £2) that goes from the point (B — b, B — b) to the point
(B=b+d6(1-v)(b—a),B—b+0(¢d—a)).

e Putting together Cases 1 and 2, we see that when v = 0 R exists only in Region III* for
p > p5 (Case 1) as well as for p, < p; < pj (Case 2); hence, for all p; > p,. When v =1 it exists
in all of Region III for p > p4 (Case 1).

8) When is Rj3 (that is, ¢/ =1, ¢* € (0,1)) an equilibrium in period 1?7

Under Ri3 the updating rules imply p;, = p; =0,

1?;? - <1flp1> <qiL>
Dy —m+7m(l—v
1f72ﬁ2+ - <1flpl> <1 7r(1+—v()1qL )> - (1f1,01> <qiL> <ﬁ>

The equilibrium conditions (9)-(10) now take the form:




CH

5. < Bob+o (W60 —a),
H
;_i = B-b+ov (Vi (ps) —a) + (1 —v) (VE(p3) — a) -

The second one cannot hold (except with measure zero) unless either p3 or py equals p} .

Case 1: p3 = p5, which then uniquely defines ¢* as long as p; < p5. Since p3 > p3 always, the

equilibrium conditions then become

SHo < Bb+8(p—a)=Ch

Bu

& _ B—b+40[vp;+1—v](b—a).
AL

Hence p5 = [cr./B, — B+b—0(1 —v)(b—a)]/[ov(b— a)], requiring:
B—-b+6(1—v)(b—a)<cr/Br, <B—-b+db—a)=CL.

Case 2: f); = p5, which then uniquely defines ¢, as long as p; < Py defined in (A.14). Since

ﬁ;“ > p; always, the two conditions then become:

M < B-b+ops(d—a),

By

o _ B—b+6(1—v)ps(b—a).
B,

The latter condition determines p5 uniquely, as long as

L <B—b+6(1-v)b—a).
Br

Finally, the first condition requires

;_HSB_b+<CL/ﬂL—B+b> <¢—a>’

H 1—v b—a

In the (¢1./Br, cu/B ) plane, the boundary is again the line £3, with slope (¢—a)/[(1—v)(b—
a)], that goes from the point (B —b, B—b) to the point (B—b+d§(1—v)(b—a),B—b+J (¢ —a)).

e Therefore, when v = 0, Rj3 exists only in Region III~ only for p < Bl(Case 2). When v =1
it exists in all of Region III for p; < p5 (Case 1).



9) When is Ry (that is, ¢/’ € (0,1), ¢ € (0,1)) an equilibrium in period 1?
Under Rg; the updating rules imply p, = 0 and

2 () (@)

Dy —mg +r(1—-v
2 - (25) e )
Py P 1-m)(1-q")
-0 <1—pl><1—w+w<l—u><1—qL>>

Note that f); > p; > p1 > py . The equilibrium conditions are then:

;—f{ = B-b+6 [V (o) - V" (p3)]
;_i = B—b+ov[VE(pd) —a] +0(1—v) [VE(p3) — ViE(p3)] -

The first condition cannot be an equality (except with measure zero in the parameter space) unless
either ,2); or py is equal to p3 ; in that case, the equality determines at most one suitable p5. The
second condition cannot be an equality unless either p; or f); or py is equal to p3; in either case,
the equality again determines at most one suitable p3. These two values of p3 do not coincide,
except with measure zero in the (cr /81, cr/By) space. Thus an equilibrium of this type cannot

exist, as no single mixing strategy can make both types indifferent.

To conclude the proofs of Propositions 2 and 3, it just remains to check that the equilibrium
indicated in bold in each of the areas of Figures 3 and 4 where multiplicity occurs is the one

preferred by the B type, and when b > a by the 5 type as well. This is straightforward. Wl
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