Technical Appendix for "Willpower and Personal Rules" by Roland Bénabou and Jean Tirole

Proof of Proposition 1. Consider first the weak type's probability of perseverance at date 1.
Pooling: $q_{1}=1$. Then $\rho_{2}^{+}=\rho_{1}$, while ρ_{2}^{-}can be any $\rho^{\prime} \leq \rho$. Optimality in (3) then requires $\rho_{1} \geq \rho_{2}^{*}>\rho^{\prime}$, otherwise the right-hand side would be zero. Let therefore $\rho_{1}>\rho_{2}^{*}$ (leaving aside the measure-zero case where $\rho_{1}=\rho_{2}^{*}$). Given that $c / \beta_{L}<C(\lambda)$, this is indeed an equilibrium.

Semi-separation: $q_{1} \in(0,1)$. This implies $\rho_{2}^{+} \in\left(\rho_{1}, 1\right)$ and $\rho_{2}^{-}=0$. Furthermore, (3) must now hold with equality, $c / \beta_{L}=B-b+\delta \lambda\left[V_{2}^{L}\left(\rho_{2}^{+}\right)-a\right]$. This can only occur if

$$
\begin{equation*}
\rho_{2}^{+} \equiv \frac{\rho_{1}}{\rho_{1}+\left(1-\rho_{1}\right)\left(q_{1}+\left(1-q_{1}\right)(1-\lambda)\right)}=\rho_{2}^{*}, \tag{A.1}
\end{equation*}
$$

requiring $\tilde{\rho}_{1}(\lambda)<\rho_{1}<\rho_{2}^{*}$, and if the mixing probability $p_{2}^{*} \equiv p_{2}\left(\rho_{2}^{*}\right)$ that will result in period 2 satisfies $c / \beta_{L}=B-b+\delta \lambda p_{2}^{*}(b-a)$. This condition and the one above uniquely determine q_{1} and p_{2}^{*} in $[0,1]$ as given in Proposition 1.

Separation: $q_{1}=0$. This implies again that $\rho_{2}^{-}=0$, and thus one must have $c / \beta_{L} \geq B-c+$ $\delta\left[V_{2}^{L}\left(\rho_{2}^{+}\right)-a\right]=V_{2}^{L}\left(\rho_{2}^{+}\right)-a$. With $c / \beta_{L}<C(\lambda)$ this can only happen for $\rho_{2}^{+}<\rho_{2}^{*}$, which means that $\rho_{1}<\tilde{\rho}_{1}(\lambda)$.

Finally, we turn to the individual's task selection in period 1 . For $\rho_{1} \geq \rho_{2}^{*}$ both types choose P with probability 1 , so it is optimal to select W. Indeed, this yields $B-c$ in period 1 and $\delta\left[\rho_{1}(B-c)+\left(1-\rho_{1}\right) b\right]$ in period 2, against a / γ in period 1 and the same expected payoff in period 2 if $N W$ is chosen instead (there is then no new information, so $\rho_{2}=\rho_{1}$ and W is chosen in period 2). Consider now the case where $\tilde{\rho}_{1}(\lambda)<\rho_{1}<\rho_{2}^{*}$. Choosing W rather than $N W$ then leads to expected net gains of Δ_{1} in period 1 and Δ_{2} in period 2 , where:

$$
\begin{equation*}
\Delta_{1} \equiv \rho_{1}(B-c-a / \gamma)+\left(1-\rho_{1}\right)\left[q_{1}(B-c)+\left(1-q_{1}\right) b-a / \gamma\right] \tag{A.2}
\end{equation*}
$$

is increasing in ρ_{1}, both directly and through q_{1}, and the same is true for

$$
\begin{align*}
\Delta_{2} / \delta \equiv & \left.\rho_{1}\left[p_{2}^{*}(B-c)+\left(1-p_{2}^{*}\right) a\right)\right]+ \\
& \left.\left.\left(1-\rho_{1}\right)\left\{\left[q_{1}+\left(1-q_{1}\right)(1-\lambda)\right)\right]\left[p_{2}^{*} b+\left(1-p_{2}^{*}\right) a\right)\right]+\left(1-q_{1}\right) \lambda a\right\}-a \\
= & p_{2}^{*}\left\{\rho_{1}(B-c-a)+\left(1-\rho_{1}\right)\left[q_{1}+\left(1-q_{1}\right)(1-\lambda)\right](b-a)\right\} . \tag{A.3}
\end{align*}
$$

By continuity, the total gain $\Delta_{1}+\Delta_{2}$ positive just below $\rho_{1}=\rho_{2}^{*}$. Therefore, the choice between W and $N W$ in period 1 is indeed governed by a cutoff $\rho_{1}^{*}<\rho_{2}^{*}$. It is ambiguous, on the other hand, whether ρ_{1}^{*} is greater or smaller than the threshold $\rho_{1}=\tilde{\rho}_{1}(\lambda)$ where $q_{1}=0$.

Bayesian Updating in the Two-Cost Case. Let us denote as $q^{i}(\rho, c)$ the probability with which type $i=H, L$ plays P when confronted with cost $c \in\left\{c_{H}, c_{L}\right\}$ in the W activity in period 1 , and given prior beliefs $\rho_{1}=\rho$. Following a recall of the first-period cost $\hat{c}=c_{H}$, Bayes' rule implies:

$$
\begin{align*}
& \frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}}=\left(\frac{\rho}{1-\rho}\right)\left(\frac{(1-\pi) q^{H}\left(\rho, c_{H}\right)+\pi(1-\nu) q^{H}\left(\rho, c_{L}\right)}{(1-\pi) q^{L}\left(\rho, c_{H}\right)+\pi(1-\nu) q^{L}\left(\rho, c_{L}\right)}\right), \tag{A.4}\\
& \frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}}=\left(\frac{\rho}{1-\rho}\right)\left(\frac{(1-\pi)\left(1-q^{H}\left(\rho, c_{H}\right)\right)+\pi(1-\nu)\left(1-q^{H}\left(\rho, c_{L}\right)\right)}{(1-\pi)\left(1-q^{L}\left(\rho, c_{H}\right)\right)+\pi(1-\nu)\left(1-q^{L}\left(\rho, c_{L}\right)\right)}\right), \tag{A.5}
\end{align*}
$$

where $\hat{\rho}_{2}^{+}$and $\hat{\rho}_{2}^{-}$denote posterior after the events P and G respectively. Similarly, following a recalled cost $\hat{c}=c_{L}$:

$$
\begin{align*}
\frac{\rho_{2}^{+}}{1-\rho_{2}^{+}} & =\left(\frac{\rho}{1-\rho}\right)\left(\frac{q^{H}\left(\rho, c_{L}\right)}{q^{L}\left(\rho, c_{L}\right)}\right), \tag{A.6}\\
\frac{\rho_{2}^{-}}{1-\rho_{2}^{-}} & =\left(\frac{\rho}{1-\rho}\right)\left(\frac{1-q^{H}\left(\rho, c_{L}\right)}{1-q^{L}\left(\rho, c_{L}\right)}\right) . \tag{A.7}
\end{align*}
$$

These expressions can be simplified once it has been shown that $q^{H}\left(\rho, c_{L}\right)=1$ and $q^{L}\left(\rho, c_{H}\right)=0$ are dominant strategies, yielding the expressions in footnotes 32 and 33 ; in particular, $\rho_{2}^{-}=0$. Note that the only case in which a posterior is undefined is that of $\hat{\rho}_{2}^{+}$when $\nu=1$ and the equilibrium calls for both types to play G when $c_{1}=c_{H}$ (rules R_{0}, R_{2} and R_{02}). Beliefs following the zero-probability event ($\hat{\sigma}=P, \hat{c}=c_{H}$) then have to be considered, as well as refinements thereof.

Proof of Propositions 2 and 3. We derive here the necessary and sufficient conditions under which each rule can be sustained in equilibrium, for the general case $\nu \in(0,1)$. We then obtain the results stated in the text by: a) letting ν tend 0 and to 1 in the formulas; b) additionally, examining the existence (and robustness to the Cho and Kreps (1987) criterion) of other equilibria (R_{0}, R_{2}, or R_{02}) that may be sustained through off-the-equilibrium-path beliefs when $\nu=1$. (Recall that there are no unexpected events for any $\nu<1$).

1) When is R_{0} (that is, $q^{H}=q^{L}=0$) an equilibrium in period $\mathbf{1}$?

Under R_{0} the updating rules imply $\rho_{2}^{+}=\hat{\rho}_{2}^{+}=1, \rho_{2}^{-}=0$ and

$$
\begin{equation*}
\frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right) \chi \tag{A.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi \equiv \frac{1-\pi}{1-\pi \nu}=\operatorname{Pr}\left[c=c_{H} \mid \hat{c}=c_{H}\right] \tag{A.9}
\end{equation*}
$$

represents the "reliability" or "credibility" of ex-post excuses. The optimality conditions (9)-(10),
together with the previously computed values of V_{2}^{i}, now require that:

$$
\begin{align*}
& \frac{c_{H}}{\beta_{H}} \geq B-b+\delta\left(\phi-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)\right) \tag{A.10}\\
& \frac{c_{L}}{\beta_{L}} \geq B-b+\delta \nu(b-a)+\delta(1-\nu)\left(b-V_{2}^{L}\left(\hat{\rho}_{2}^{-}\right)\right) \tag{A.11}
\end{align*}
$$

Let us therefore define $\bar{\rho}_{1}$ as the value of ρ_{1} which leads to the posterior $\hat{\rho}_{2}^{-}=\rho_{2}^{*}$ in (A.8):

$$
\begin{equation*}
\bar{\rho}_{1} \equiv \frac{\rho_{2}^{*}}{\rho_{2}^{*}+\left(1-\rho_{2}^{*}\right) \chi} . \tag{A.12}
\end{equation*}
$$

Note that $\bar{\rho}_{1}>\rho_{1}^{*}$ and that $\bar{\rho}_{1}$ is decreasing in χ. The equilibrium conditions are met when either (a) or (b) below holds:
a) $\rho_{1}<\bar{\rho}_{1}$ and

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}} \geq B-b+\delta(\phi-a)=C_{H} \\
& \frac{c_{L}}{\beta_{L}} \geq B-b+\delta(b-a)=C_{L}
\end{aligned}
$$

b) $\rho_{1}>\bar{\rho}_{1}$ and

$$
\frac{c_{L}}{\beta_{L}} \geq B-b+\delta \nu(b-a)
$$

- For $\nu=0$ we therefore find that R_{0} is an equilibrium in all of Regions I to IV for $\rho_{1}>\bar{\rho}_{1}$, and in Region II for every value of ρ_{1}. As $\nu \rightarrow 1$, note that $\chi \rightarrow 1$ and thus $\bar{\rho}_{1} \rightarrow \rho_{2}^{*}$. Consequently, R_{0} is a limit equilibrium only in Regions IV (for $\rho_{1}>\bar{\rho}_{1}$) and II (for any ρ_{1}). When ν is exactly equal to 1 , however, $\hat{\rho}_{2}^{+}$is unconstrained except by the monotonicity requirement, $\hat{\rho}_{2}^{+} \geq \rho_{1}=\hat{\rho}_{2}^{-}$. By choosing $\hat{\rho}_{2}^{+}=\rho_{1}$, or even slightly higher, one can thus always reduce the first equilibrium condition (9) to $c_{H} / \beta_{H} \geq B-b$, which holds automatically. Thus (A.10) is no longer a requirement, meaning that R_{0} is now an equilibrium as long as $c_{L} / \beta_{L} \geq C_{L}$. For $\rho_{1}<\rho_{2}^{*}$ in Region IV, however, it fails the Cho-Kreps criterion. Indeed: (i) playing P when $c=c_{H}$ is strictly dominated for type β_{L}, by Assumption 8; (ii) with $\nu=1$ the event ($\sigma=P, c=c_{H}$) is perfectly observable by the period-2 self; (iii) type β_{H} will gain if deviating to P when $c=c_{H}$ identifies it as the strong type, resulting in a play of W rather than $N W$ in period 2 .

2) When is R_{1} (that is, $q^{H}=q^{L}=1$) an equilibrium in period 1 ?

Under R_{1} the updating rules imply $\rho_{2}^{+}=\rho_{1}, \rho_{2}^{-}=$any $\rho^{\prime} \leq \rho_{1}, \hat{\rho}_{2}^{-}=0$ and

$$
\begin{equation*}
\frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1}{1-\chi}\right), \tag{A.13}
\end{equation*}
$$

where χ was defined in (A.9). The equilibrium conditions (9)-(10) now take the form:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & \leq B-b+\delta\left(V_{2}^{H}\left(\hat{\rho}_{2}^{+}\right)-a\right) \\
\frac{c_{L}}{\beta_{L}} & \leq B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{1}\right)-V_{2}^{L}\left(\rho^{\prime}\right)\right)+\delta(1-\nu)\left(V_{2}^{L}\left(\hat{\rho}_{2}^{+}\right)-a\right)
\end{aligned}
$$

Given Assumption 6, the first condition requires that $c_{H} / \beta_{H} \leq B-b+\delta(\phi-a)=C_{H}$ and $\hat{\rho}_{2}^{+} \geq \rho_{2}^{*}$. Define therefore $\underline{\rho}_{1}$ as value of ρ_{1} which leads to the posterior $\hat{\rho}_{2}^{+}=\rho_{2}^{*}$ in (A.13):

$$
\begin{equation*}
\underline{\rho}_{1} \equiv \frac{\rho_{2}^{*}}{\rho_{2}^{*}+\left(1-\rho_{2}^{*}\right) /(1-\chi)} . \tag{A.14}
\end{equation*}
$$

Note that $\underline{\rho}_{1}<\rho_{2}^{*}$, and that $\underline{\rho}_{1}$ is decreasing in χ. We must have $\rho_{1}>\underline{\rho}_{1}$, so the second equilibrium condition takes the form:

$$
\begin{equation*}
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{1}\right)-V_{2}^{L}\left(\rho^{\prime}\right)\right)+\delta(1-\nu)(b-a) . \tag{A.15}
\end{equation*}
$$

For $\rho_{1}>\rho_{2}^{*}$, it can be met with $\rho^{\prime} \leq \rho_{1}$ as long as

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta(b-a)=C_{L}
$$

For $\rho_{1} \in\left(\underline{\rho}_{1}, \rho_{2}^{*}\right)$ the second term in (A.15) is zero, so the requirement becomes:

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta(1-\nu)(b-a)
$$

To summarize, first it must be that $c_{H} / \beta_{H} \leq C_{H}$. Second, when $c_{L} / \beta_{L}<B-b+\delta(1-\nu)(b-a)$ this equilibrium exists for all $\rho \in\left(\underline{\rho}_{1}, 1\right)$; when $B-b+\delta(1-\nu)(b-a)<c_{L} / \beta_{L}<B-b+\delta(b-a)$ it exists for all $\rho \in\left(\rho_{2}^{*}, 1\right)$. In all other cases it does not exist.

- In particular, when $\nu=0$ the equilibrium exists only in Region III, for $\rho_{1}>\underline{\rho}_{1}$. When $\nu=1$, implying $\underline{\rho}_{1}=0$, it exists in Region III for $\rho>\rho_{2}^{*}$.

3) When is R_{2} (that is, $q^{H}=0, q^{L}=1$) an equilibrium in period $\mathbf{1}$?

Under R_{2} the updating rules imply $\rho_{2}^{+}=\rho_{1}, \rho_{2}^{-}=$any $\rho^{\prime} \leq \rho_{1}$ and $\hat{\rho}_{2}^{+}=\hat{\rho}_{2}^{-}=\rho_{1}$. The equilibrium conditions (9)-(10) now take the form $c_{H} / \beta_{H} \geq B-b$, which always holds, and

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{1}\right)-V_{2}^{L}\left(\rho^{\prime}\right)\right) .
$$

This requires that $\rho_{1}>\rho_{2}^{*}>\rho^{\prime}$; since $\rho^{\prime} \leq \rho_{1}$ is unconstrained, only the first of these two inequalities matters. Finally, it must be that:

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu(b-a) .
$$

- With $\nu=0, R_{2}$ is therefore never an equilibrium. With either $\nu \rightarrow 1$ or $\nu=1$, it is an equilibrium for $c_{L} / \beta_{L} \leq C_{L}$ (Regions I and III), provided that $\rho_{1}>\rho_{2}^{*}$; note that in this equilibrium (9) is not binding when $\nu<1$, and thus a fortiori not when $\nu=1$.

4) When is R_{3} (that is, $q^{H}=1, q^{L}=0$) an equilibrium in period $\mathbf{1}$?

Under R_{3} the updating rules imply $\rho_{2}^{+}=\hat{\rho}_{2}^{+}=1, \rho_{2}^{-}=\hat{\rho}_{2}^{-}=0$. The equilibrium conditions (9)-(10) now take the form:

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}} \leq B-b+\delta(\phi-a)=C_{H} \\
& \frac{c_{L}}{\beta_{L}} \geq B-b+\delta(b-a)=C_{L}
\end{aligned}
$$

- Thus, whether for $\nu=0$ or $\nu=1, R_{3}$ is an equilibrium in Region IV, for all values of ρ_{1}.

5) When is R_{02} (that is, $q^{H}=0, q^{L} \in(0,1)$) an equilibrium in period 1?

Under R_{02} the updating rules imply $\rho_{2}^{-}=0$ and

$$
\begin{gathered}
\frac{\rho_{2}^{+}}{1-\rho_{2}^{+}}=\frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1}{q^{L}}\right), \\
\frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1-\pi}{1-\pi+\pi(1-\nu)\left(1-q^{L}\right)}\right) .
\end{gathered}
$$

Conditions (9)-(10) now take the form:

$$
\begin{align*}
\frac{c_{H}}{\beta_{H}} & \geq B-b+\delta\left(V_{2}^{H}\left(\hat{\rho}_{2}^{+}\right)-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)\right) \tag{A.16}\\
\frac{c_{L}}{\beta_{L}} & =B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{2}^{+}\right)-a\right)+\delta(1-\nu)\left(V_{2}^{L}\left(\rho_{2}^{+}\right)-V_{2}^{L}\left(\hat{\rho}_{2}^{-}\right)\right) \tag{A.17}
\end{align*}
$$

The second one cannot hold (except with measure zero) unless either ρ_{2}^{+}or $\hat{\rho}_{2}^{-}$equals ρ_{2}^{*}.
Case 1: $\rho_{2}^{+}=\rho_{2}^{*}$, which uniquely defines q^{L} as long as $\rho_{1}<\rho_{2}^{*}$. Conditions (9)-(10) become:

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}} \geq B-b+\delta p_{2}\left(\rho_{2}^{*}\right)(\phi-a) \\
& \frac{c_{L}}{\beta_{L}}=B-b+\delta p_{2}\left(\rho_{2}^{*}\right)(b-a)
\end{aligned}
$$

Abbreviating $p_{2}\left(\rho_{2}^{*}\right)$ as p_{2}^{*}, the second condition yields $p_{2}^{*}=\left(c_{L} / \beta_{L}-B+b\right) /(\delta(b-a))$, so the equilibrium requirements finally become:

$$
\begin{align*}
\frac{c_{L}}{\beta_{L}} & \leq B-b+\delta(b-a)=C_{L} \tag{A.18}\\
\frac{c_{H}}{\beta_{H}} & \geq B-b+\left(\frac{c_{L}}{\beta_{L}}-B+b\right)\left(\frac{\phi-a}{b-a}\right) . \tag{A.19}
\end{align*}
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane, the boundary for the latter inequality is the line \mathfrak{L}_{1}, with slope $(\phi-a) /(b-a)$, that goes from the point $(B-b, B-b)$ to the point $(B-b+\delta(b-a), B-b+$ $\delta(\phi-a))=\left(C_{L}, C_{H}\right)$, thus separating regions III $^{-}$and III $^{+}$as indicated on Figure 4.

Case 2: $\hat{\rho}_{2}^{-}=\rho_{2}^{*}$, which by the updating rules uniquely defines q^{L} as long as

$$
\begin{equation*}
\rho_{2}^{*}<\rho_{1}<\frac{\rho_{2}^{*}}{\rho_{2}^{*}+\left(1-\rho_{2}^{*}\right) \chi}=\bar{\rho}_{1} . \tag{A.20}
\end{equation*}
$$

The equilibrium conditions then become:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & \geq B-b+\delta\left(1-p_{2}^{*}\right)(\phi-a) \\
\frac{c_{L}}{\beta_{L}} & =B-b+\delta\left[\nu+(1-\nu)\left(1-p_{2}^{*}\right)\right](b-a)
\end{aligned}
$$

The latter yields: $1-p_{2}^{*}=\left[\left(c_{L} / \beta_{L}-B+b\right) /(\delta(b-a))-\nu\right] /(1-\nu)$ as long as

$$
B-b+\nu \delta(b-a)<c_{L} / \beta_{L}<B-b+\delta(b-a)=C_{L} .
$$

The first condition then requires:

$$
\begin{equation*}
\frac{c_{H}}{\beta_{H}} \geq B-b+\left(\frac{c_{L} / \beta_{L}-B+b-\nu \delta(b-a)}{1-\nu}\right)\left(\frac{\phi-a}{b-a}\right) . \tag{A.21}
\end{equation*}
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane, the boundary for the second one is the line \mathfrak{L}_{2}, with slope $(\phi-$ $a) /[(1-\nu)(b-a)]$, that goes from the point $(B-b+\delta \nu(b-a), B-b)$ to the point $(B-b+$ $\delta(b-a), B-b+\delta(\phi-a))$.

- For $\nu=0, R_{02}$ therefore exists in Regions I and III ${ }^{+}$for $\rho_{1}<\rho_{2}^{*}$ (Case 1) as well as for $\rho_{2}^{*}<\rho_{1}<\bar{\rho}_{1}$ (Case 2), and thus for all $\rho_{1}<\bar{\rho}_{1}$. As $\nu \rightarrow 1$ we have $\bar{\rho}_{1} \rightarrow \rho_{2}^{*}$, so it exists in Regions I and III^{+}for $\rho_{1}<\rho_{2}^{*}$ (Case 1). When ν is exactly equal to $1, \hat{\rho}_{2}^{+}$is again unconstrained except by the monotonicity requirement, $\hat{\rho}_{2}^{+} \geq \rho_{1}$. Case 2 is still inapplicable since $\hat{\rho}_{2}^{-}=\rho_{1}$, while in Case 1 one can again choose $\hat{\rho}_{2}^{+}$so as to reduce (9) to $c_{H} / \beta_{H} \geq B-b$, which always holds. The only binding equilibrium condition is then (A.18), together with $\rho_{1}<\rho_{2}^{*}$ which is required for $\rho_{2}^{+}=\rho_{2}^{*}$ to have a solution in q^{L}. Thus R_{02} exists in all of Regions I and III when $\rho_{1}<\rho_{2}^{*}$. In the latter, however, it fails the Cho-Kreps criterion; the proof is identical to that given earlier to eliminate R_{2} from Region IV when $\rho_{1}<\rho_{2}^{*}$.

6) When is R_{03} (that is, $\left.q^{H} \in(0,1), q^{L}=0\right)$ an equilibrium in period 1?

Under R_{03} the updating rules imply $\rho_{2}^{+}=1, \rho_{2}^{-}=0, \hat{\rho}_{2}^{+}=1$ and

$$
\frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{(1-\pi)\left(1-q^{H}\right)}{1-\pi+\pi(1-\nu)}\right)=\chi\left(1-q^{H}\right)\left(\frac{\rho_{1}}{1-\rho_{1}}\right) .
$$

The equilibrium conditions (9)-(10) now take the form:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & =B-b+\delta\left(\phi-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)\right) \\
\frac{c_{L}}{\beta_{L}} & \geq B-b+\delta \nu(b-a)+\delta(1-\nu)\left(b-V_{2}^{L}\left(\hat{\rho}_{2}^{-}\right)\right) .
\end{aligned}
$$

The first condition requires that $\hat{\rho}_{2}^{-}=\rho_{2}^{*}$, which uniquely determines q^{H} as long as $\rho_{1}>\bar{\rho}_{1}$ defined earlier in (A.12). Then, $\phi-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)=\left(1-p_{2}^{*}\right)(\phi-a)$, or $1-p_{2}^{*}=\left(c_{H} / \beta_{H}-B+b\right) /(\delta(\phi-a))$, requiring that:

$$
c_{H} / \beta_{H}<B-b+\delta(\phi-a)=C_{H} .
$$

The second equilibrium condition then becomes:

$$
\frac{c_{L}}{\beta_{L}} \geq B-b+\delta \nu(b-a)+(1-\nu)\left(c_{H} / \beta_{H}-B+b\right)\left(\frac{b-a}{\phi-a}\right) .
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane, the boundary for this inequality is again the line \mathfrak{L}_{2}, with slope $(\phi-a) /[(1-\nu)(b-a)]$, that goes from the point $(B-b+\delta \nu(b-a), B-b)$ to the point $(B-b+$ $\delta(b-a), B-b+\delta(\phi-a))$.

- For $\nu=0, R_{03}$ therefore exists in Regions III ${ }^{-}$and IV for $\rho_{1}>\bar{\rho}_{1}$. For $\nu=1$, in which case $\bar{\rho}_{1}=\rho_{2}^{*}$, it exists in Region IV only, for $\rho_{1}>\rho_{2}^{*}$.

7) When is R_{12} (that is, $q^{H}=1, q^{L} \in(0,1)$) an equilibrium in period 1?

Under R_{12} the updating rules imply $\rho_{2}^{+}=\rho_{1}, \rho_{2}^{-}=$any $\rho^{\prime} \leq \rho_{1}$, and

$$
\begin{aligned}
& \frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}}=\left(\frac{\rho_{1}}{1-\rho}\right)\left(1-q^{H}\right) \\
& \frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}}=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{(1-\pi) q^{H}+\pi(1-\nu)}{\pi(1-\nu)}\right) .
\end{aligned}
$$

Conditions (9)-(10) now take the form:

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}}=B-b+\delta\left(V_{2}^{H}\left(\hat{\rho}_{2}^{+}\right)-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)\right) \\
& \frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{1}\right)-V_{2}^{L}\left(\rho^{\prime}\right)\right)+\delta(1-\nu)\left(V_{2}^{L}\left(\hat{\rho}_{2}^{+}\right)-V_{2}^{L}\left(\hat{\rho}_{2}^{-}\right)\right)
\end{aligned}
$$

The first one requires either Case 1 or Case 2 below.
Case 1: $\hat{\rho}_{2}^{-}=\rho_{2}^{*}$, which uniquely defines q^{H} as long as $\rho_{1}>\rho_{2}^{*}$. Then $1-p_{2}^{*}=\left(c_{H} / \beta_{H}-B+b\right) /$ $(\delta(\phi-a))$, requiring

$$
c_{H} / \beta_{H}<B-b+\delta(\phi-a)=C_{H} .
$$

The second equilibrium condition then becomes:

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu\left(b-V_{2}^{L}\left(\rho^{\prime}\right)\right)+(1-\nu)\left(c_{H} / \beta_{H}-B+b\right)\left(\frac{b-a}{\phi-a}\right) .
$$

This can be satisfied with $\rho^{\prime} \leq \rho_{1}$ as long as

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu(b-a)+(1-\nu)\left(c_{H} / \beta_{H}-B+b\right)\left(\frac{b-a}{\phi-a}\right) .
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane, the boundary for the latter inequality is again the line \mathfrak{L}_{2}, with slope $(\phi-a) /[(1-\nu)(b-a)]$, that goes from the point $(B-b+\delta \nu(b-a), B-b)$ to the point $(B-b+\delta(b-a), B-b+\delta(\phi-a))$.

Case 2: $\hat{\rho}_{2}^{+}=\rho_{2}^{*}$, which then uniquely defines q^{H} as long as $\underline{\rho}_{1}<\rho_{1}<\rho_{2}^{*}$. Then,

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}}=B-b+\delta p_{2}^{*}(\phi-a) \\
& \frac{c_{L}}{\beta_{L}} \leq B-b+\delta \nu \times 0+\delta(1-\nu) p_{2}^{*}(b-a) .
\end{aligned}
$$

which uniquely determines p_{2}^{*} as long as

$$
\begin{aligned}
& \frac{c_{H}}{\beta_{H}} \leq B-b+\delta(\phi-a)=C_{H} \\
& \frac{c_{L}}{\beta_{L}} \leq B-b+(1-\nu)\left(c_{H} / \beta_{H}-B+b\right)\left(\frac{b-a}{\phi-a}\right) .
\end{aligned}
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane the boundary for the latter inequality is the line \mathfrak{L}_{3}, with slope $(\phi-a) /[(1-\nu) \delta(b-a)]$ (same as for $\left.\mathfrak{L}_{2}\right)$ that goes from the point $(B-b, B-b)$ to the point $(B-b+\delta(1-\nu)(b-a), B-b+\delta(\phi-a))$.

- Putting together Cases 1 and 2, we see that when $\nu=0 R_{12}$ exists only in Region III^{+}for $\rho>\rho_{2}^{*}$ (Case 1) as well as for $\underline{\rho}_{1}<\rho_{1}<\rho_{2}^{*}$ (Case 2); hence, for all $\rho_{1}>\underline{\rho}_{1}$. When $\nu=1$ it exists in all of Region III for $\rho>\rho_{2}^{*}$ (Case 1).

8) When is R_{13} (that is, $\left.q^{H}=1, q^{L} \in(0,1)\right)$ an equilibrium in period 1?

Under R_{13} the updating rules imply $\rho_{2}^{-}=\hat{\rho}_{2}^{-}=0$,

$$
\begin{aligned}
\frac{\rho_{2}^{+}}{1-\rho_{2}^{+}} & =\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1}{q^{L}}\right), \\
\frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}} & =\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1-\pi+\pi(1-\nu)}{\pi(1-\nu) q^{L}}\right)=\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1}{q^{L}}\right)\left(\frac{1}{1-\chi}\right) .
\end{aligned}
$$

The equilibrium conditions (9)-(10) now take the form:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & \leq B-b+\delta\left(V_{2}^{H}\left(\hat{\rho}_{2}^{+}\right)-a\right) \\
\frac{c_{L}}{\beta_{L}} & \left.=B-b+\delta \nu\left(V_{2}^{L}\left(\rho_{2}^{+}\right)-a\right)+\delta(1-\nu)\left(V_{2}^{L}\left(\hat{\rho}_{2}^{+}\right)-a\right)\right) .
\end{aligned}
$$

The second one cannot hold (except with measure zero) unless either ρ_{2}^{+}or $\hat{\rho}_{2}^{+}$equals ρ_{2}^{*}.
Case 1: $\rho_{2}^{+}=\rho_{2}^{*}$, which then uniquely defines q^{L} as long as $\rho_{1}<\rho_{2}^{*}$. Since $\hat{\rho}_{2}^{+}>\rho_{2}^{+}$always, the equilibrium conditions then become

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & \leq B-b+\delta(\phi-a)=C_{H} \\
\frac{c_{L}}{\beta_{L}} & =B-b+\delta\left[\nu p_{2}^{*}+1-\nu\right](b-a)
\end{aligned}
$$

Hence $p_{2}^{*}=\left[c_{L} / \beta_{L}-B+b-\delta(1-\nu)(b-a)\right] /[\delta \nu(b-a)]$, requiring:

$$
B-b+\delta(1-\nu)(b-a)<c_{L} / \beta_{L}<B-b+\delta(b-a)=C_{L} .
$$

Case 2: $\hat{\rho}_{2}^{+}=\rho_{2}^{*}$, which then uniquely defines q^{L}, as long as $\rho_{1}<\underline{\rho}_{1}$ defined in (A.14). Since $\hat{\rho}_{2}^{+}>\rho_{2}^{+}$always, the two conditions then become:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & \leq B-b+\delta p_{2}^{*}(\phi-a) \\
\frac{c_{L}}{\beta_{L}} & =B-b+\delta(1-\nu) p_{2}^{*}(b-a)
\end{aligned}
$$

The latter condition determines p_{2}^{*} uniquely, as long as

$$
\frac{c_{L}}{\beta_{L}} \leq B-b+\delta(1-\nu)(b-a)
$$

Finally, the first condition requires

$$
\frac{c_{H}}{\beta_{H}} \leq B-b+\left(\frac{c_{L} / \beta_{L}-B+b}{1-\nu}\right)\left(\frac{\phi-a}{b-a}\right)
$$

In the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ plane, the boundary is again the line \mathfrak{L}_{3}, with slope $(\phi-a) /[(1-\nu)(b-$ $a)]$, that goes from the point $(B-b, B-b)$ to the point $(B-b+\delta(1-\nu)(b-a), B-b+\delta(\phi-a))$.

- Therefore, when $\nu=0, R_{13}$ exists only in Region III ${ }^{-}$only for $\rho<\underline{\rho}_{1}$ (Case 2). When $\nu=1$ it exists in all of Region III for $\rho_{1}<\rho_{2}^{*}$ (Case 1).

9) When is R_{01} (that is, $\left.q^{H} \in(0,1), q^{L} \in(0,1)\right)$ an equilibrium in period $1 ?$

Under R_{01} the updating rules imply $\rho_{2}^{-}=0$ and

$$
\begin{aligned}
\frac{\rho_{2}^{+}}{1-\rho_{2}^{+}} & =\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{1}{q^{L}}\right) \\
\frac{\hat{\rho}_{2}^{+}}{1-\hat{\rho}_{2}^{+}} & =\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{(1-\pi) q^{H}+\pi(1-\nu)}{\pi(1-\nu) q^{L}}\right) \\
\frac{\hat{\rho}_{2}^{-}}{1-\hat{\rho}_{2}^{-}} & =\left(\frac{\rho_{1}}{1-\rho_{1}}\right)\left(\frac{(1-\pi)\left(1-q^{H}\right)}{1-\pi+\pi(1-\nu)\left(1-q^{L}\right)}\right)
\end{aligned}
$$

Note that $\hat{\rho}_{2}^{+}>\rho_{2}^{+}>\rho_{1}>\hat{\rho}_{2}^{-}$. The equilibrium conditions are then:

$$
\begin{aligned}
\frac{c_{H}}{\beta_{H}} & =B-b+\delta\left[V_{2}^{H}\left(\hat{\rho}_{2}^{+}\right)-V_{2}^{H}\left(\hat{\rho}_{2}^{-}\right)\right] \\
\frac{c_{L}}{\beta_{L}} & =B-b+\delta \nu\left[V_{2}^{L}\left(\rho_{2}^{+}\right)-a\right]+\delta(1-\nu)\left[V_{2}^{L}\left(\hat{\rho}_{2}^{+}\right)-V_{2}^{L}\left(\hat{\rho}_{2}^{-}\right)\right]
\end{aligned}
$$

The first condition cannot be an equality (except with measure zero in the parameter space) unless either $\hat{\rho}_{2}^{+}$or $\hat{\rho}_{2}^{-}$is equal to ρ_{2}^{*}; in that case, the equality determines at most one suitable p_{2}^{*}. The second condition cannot be an equality unless either ρ_{2}^{+}or $\hat{\rho}_{2}^{+}$or $\hat{\rho}_{2}^{-}$is equal to ρ_{2}^{*}; in either case, the equality again determines at most one suitable p_{2}^{*}. These two values of p_{2}^{*} do not coincide, except with measure zero in the $\left(c_{L} / \beta_{L}, c_{H} / \beta_{H}\right)$ space. Thus an equilibrium of this type cannot exist, as no single mixing strategy can make both types indifferent.

To conclude the proofs of Propositions 2 and 3 , it just remains to check that the equilibrium indicated in bold in each of the areas of Figures 3 and 4 where multiplicity occurs is the one preferred by the β_{H} type, and when $b \geq a$ by the β_{L} type as well. This is straightforward.

