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Abstract

We study a sequential experimentation model with endogenous feedback. Agents
choose between a safe and risky action, the latter generating stochastic rewards. When
making this choice, each agent is selfishly motivated (myopic). However, agents can dis-
close their experiences to a public record, and when doing so are pro-socially motivated
(forward-looking). Disclosure is both polarized (only extreme signals are disclosed) and
positively biased (no feedback is bad news). The extent of disclosure is non-monotone in
prior uncertainty. Subsidizing disclosure costs can paradoxically lead to less disclosure,

but more experimentation.
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1 INTRODUCTION

In many settings, agents face a choice between safe and risky actions, with different individ-
uals facing these choices in sequence. Agents might benefit from the information generated
by those who preceded them. For instance, consider consumers choosing whether or not to
dine at a restaurant with unknown quality, or to watch a new movie. Those who do so can

then leave feedback, helping later-arriving consumers make more informed choices. Similar
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settings include the adoption of new products and technologies, employment choices, and
sequential voting.

A well-known dynamic externality emerges in such settings, namely that agents do not
internalize the benefit to future consumers of taking the risky action, leaving feedback
and thereby generating socially valuable information. To remedy this inefficient under-
exploration, a planner would direct agents to take the risky action even when it is unprof-
itable to them, provided the informational gain to future agents more than compensates.
This question has been studied extensively in economics and computer science under the
label of “incentivized exploration (IE)” (Kremer et al., 2014; Che and Hoérner, 2018), itself
part of the broader literatures on social learning and sequential experimentation (Banerjee,
1992; Bikhchandani et al., 1992; Smith and Sgrensen, 2000; Smith et al., 2021).! Papers in
the IE literature largely take a normative approach to the problem. Namely, they assume
the presence of a benevolent designer who can control the provision of incentives either
via dynamic information provision or direct recommendations. Furthermore, these works
largely assume that, once generated, individual signals are perfectly observed by the planner
or designer in charge of public information provision.

Such studies are thus silent on a particularly salient issue within the online feedback
setting — why and when do people leave feedback in the first place? For instance, consumers
might be driven by a desire to help future consumers make informed choices, or to reward
or punish a seller for a positive or negative experience. In practice, while feedback is often
highly valued by consumers, the vast majority fail to provide it,” and those that do provide
feedback display well-known biases such as positive selection (Nosko and Tadelis, 2015;
Hui et al., 2024) — undisclosed experiences are on average negative — and polarization
(Schoenmueller et al., 2020) — extreme reviews are more prevalent than average reviews.

We take a step towards addressing these questions by providing a positive theory of IE.

Namely, we propose a simple three-period model of sequential experimentation, in which

!See Slivkins (2022) and Bikhchandani et al. (2022) for recent surveys on IE and social learning more
generally.

2Recent surveys report that only around 10% of consumers regularly leave reviews. See https://tinyurl.
com/mrrsf9v5, https://tinyurl.com/ux3zyuem.
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we endow our agents with pro-social motives to leave feedback.? In our model, three agents
arrive sequentially and have the choice between a safe (S) and risky action (R). Action
S generates a deterministic reward, whereas R yields a random reward correlated to an
underlying hidden state, for instance, the unknown quality of a product. If an agent plays
R, they can disclose their signal. Our main analysis models disclosure via hard evidence
with noisy transmission (Dye, 1985a); an agent is able to leave feedback with probability
a € [0,1], but can either truthfully report their signal or not report it at all. Two crucial
assumptions determine an agent’s payoff. First, when choosing their action, we assume that
they are fully self-interested, maximizing only their personal reward. Second, when making
their subsequent disclosure choice, we assume agents are fully pro-social. Formally, they
have lexicographic preferences over making optimal consumption decisions for themselves,
and then transmitting useful information to help others do the same. We discuss these
modeling choices further below.

This simple combination of ingredients delivers a rich theory of selective disclosure, which
both accords with well-documented phenomena and provides new testable predictions. In
particular, our first main result (Theorem 1) demonstrates that equilibrium disclosure is
both positively selected and polarized. The intuition is simple. When player 1 (P1) plays
R, their disclosure choice is governed equally by the subsequent payoffs of P2 and P3. In
contrast, P2 is guided purely by their own payoff when taking their action. For instance, an
informed P2 might fail to experiment (play R), even though the loss to themselves is smaller
than the gain to P3 that the information generated by doing so would provide. P1 would
ideally like to avoid such instances, and thus strategically conceals their own experience,
inducing P2 to experiment against their interests for the sake of P3.

Simply put, an early adopter would rather not take responsibility for causing the un-
timely demise of a new product, if there is a reasonable chance the product is in fact worth
a second chance, and in this case they keep quiet. On the other hand, when experiences

are sufficiently negative, P1 is convinced that no further experimentation should occur and

3We discuss the limitations of our three-period specification in Section 6.3.



thus terminates it by posting their feedback, while for (even marginally) positive experi-
ences, there is no downside to disclosure. Thus, strategic non-disclosure is used exclusively
by P1 to foster efficient experimentation by P2. Of course, models that assume that leav-
ing feedback is costly and done only when sufficiently informative also generate polarized
feedback, but struggle to also deliver positive selection from a single behavioral foundation.*

Beyond these, our model delivers further predictions. For instance, we fully character-
ize how equilibrium non-disclosure, and thus experimentation, varies with the prior belief
regarding risky payoffs (Theorem 2). We view this exercise as capturing, in a reduced-form
manner, how disclosure varies with how old or well-established the product market in ques-
tion is. We show that the extent of experimentation is hump-shaped in the prior. Moreover,
equilibrium experimentation disappears as prior uncertainty vanishes.

We also show that the extent of experimentation is also hump-shaped in «, the feedback
opportunity parameter. This insight has important implications for real-world interventions;
practitioners argue that the lack of feedback in online markets leads to biased inference,
and that making feedback less costly (e.g., by providing explicitly monetary incentives)
would lead to more information and thus experimentation (Marinescu et al., 2021). If
we take the natural interpretation that a corresponds to the fraction of agents for whom
feedback is costless and 1 — « the fraction for whom it is prohibitively costly, our result
suggests that making feedback less costly could paradoxically lead to less disclosure, and
more generally that the effectiveness of such interventions in stimulating feedback rates will
vary by products and markets.

The joint assumption of selfish consumption and pro-social disclosure is appealing on
three separate fronts. First, endowing agents with benevolent preferences in this manner
allows our theory to be viewed as a minimal departure from the normative analyses in the
IE literature. That is, our agents are effectively mini-planners when disclosing, facing the
same trade-off between exploration (long-run information gains) and ezxploitation (short-run

consumption gains) as in previous work, but they also face additional constraints imposed

4For instance, Hui et al. (2024) allow feedback to be positively biased for unmodelled reasons, suggesting
reasons such as fear of retaliation or a simple aversion to providing negative criticism.



on them in equilibrium, such as ex-post optimality of disclosure rules. Our results thus
demonstrate how such constraints shape the degree to which disclosure can be used to
incentivize exploration.

Second, from a positive perspective, recent surveys suggest that the welfare of other
consumers is a key driver when leaving feedback.” At the same time, empirical evidence
suggests that incentives to provide feedback are divorced from actual consumption choices
in online settings (Cabral and Li, 2015). We present a first attempt at formalizing these
arguments, with a view to understanding both their theoretical foundations and their ability
to organize empirical findings.

Third, the informational externality described above derives fundamentally from the
structure of intertemporal preferences, namely that agents are “present-biased” when mak-
ing their consumption choices. This gives rise to an alternative, psychological interpretation
of the model. Instead of a sequence of agents, consider a single decision maker with the
following dynamically inconsistent preferences. When taking actions that affect current pay-
offs, they are myopic (completely present biased), whereas when deciding what available
information to store in memory to inform future choices, they are patient. This corresponds
to a limiting case of quasi-hyperbolic, or £ (Laibson, 1997) preferences where § is arbitrar-
ily small. By modeling the disclosure objective as altruistic, our framework permits this
application to an individual who selectively encodes their experiences in order to become
less “conservative” — that is, more open to trying and learning from new experiences. Our
work thus demonstrates a close conceptual connection between IE and motivated reasoning
(Bénabou and Tirole, 2002, 2004; Carrillo and Mariotti, 2000).

Our model of feedback imposes two important constraints: feedback must be both ex-
post optimal and truthful. To explore how the first constraint shapes our results, we analyze
communication under commitment, and find that it is again polarized and positively selected
However, in contrast to the disclosure benchmark (Theorem 2), this pattern does not vanish

with prior uncertainty.

®For example, see https://tinyurl.com/mrybw969.
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Turning to the second constraint, our focus on disclosure of hard evidence as the channel
through which feedback takes place is primarily motivated by the case of online reviews.
While these share elements of both disclosure and cheap talk, a number of features make
them closer to the former. First, the fact that a large share of consumers choose to not
leave a review calls for a disclosure model. Second, platforms indicate which are “verified

[13

purchase” or “verified traveler” reviews and, conversely, take strong measures against fake

reviews: using artificial intelligence to detect and remove them, and taking legal action
against the intermediaries who sell such fake reviews.® Vendors can also appeal to the
platform to remove false criticism. Third, reviewers often post specific facts, photos and
videos, book commentaries, etc. to support their evaluations; relatedly, a large experimental
literature documents significant and widespread lying aversion (e.g., Abeler et al. (2014,
2019)). Finally, reviews are themselves evaluated by other customers, who can tag a review
as helpful or on the contrary report it as fake. Amazon also materially incentivizes and then
highlights informative reviews with Amazon Vines, a program that selects “customers who
consistently write [the most] insightful reviews”; they can then request for free products
from thousands of brands, on which they then write reviews that are distinguished by a
special badge. Admittedly, even all these measures still leave room for some fake reviews
and biased reviews by real consumers (He et al., 2022). Therefore, we also analyze the case
of cheap talk, comparing and contrasting its implications with those of disclosure

In concurrent and independent work, Smirnov and Starkov (2024) analyze a very similar
model, focusing on the persuasion benchmark and cheap talk. Like us, they mainly study
the three-period case, but also obtain some partial results for an infinite horizon (see Section
6 for further discussion). Analyzing disclosure allows us to uncover tight comparative-statics
implications on the nature and degree of equilibrium communication; our results regarding
non-monotone disclosure (Theorem 2 and Corollary 3) have no analog under either of the

other two alternative forms of information transmission.

The paper proceeds as follows. After introducing the model (Section 2), we fully char-

5See https://tinyurl.com/2md6zhnp.
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acterize equilibrium disclosure in Section 3. In Sections 4 and 5 we derive key comparative
static results regarding both prior uncertainty and disclosure opportunities, respectively. In
Section 6 we discuss our modeling choices, and in particular contrast verifiable disclosure
with persuasion and cheap talk, with details in Online Appendices B and C. We conclude
with thoughts on future research in Section 7. Unless otherwise mentioned, proofs are

gathered in the Appendix.

2 MODEL

Players and signals — At each date t = 1,2,3, a short-lived agent arrives and takes a
binary decision a; € {0, 1}, corresponding to safe and risky actions respectively. The safe
action generates a payoff 0. The risky action incurs a cost ¢ € (0,1) and generates a payoff
distributed according to Fy, where the distribution Fy depends on a state § € {H, L}, admits
a density fp and is supported on the compact real interval X = [z, z]. We shall often refer
to a; = 1 as “consuming”, and to the realized payoff x € X as a signal.

The state 6 is initially unknown, with all agents sharing the common prior p = P(6 = H).
Let p* denote the posterior belief formed by combining the belief p with the signal z € X.

That is,

o= pfu(z) pfu(r)
-~ fel@)  pfu(z)+ (1 —p)Fr(z)

Note that for all p € (0,1), p* = p if and only if fy(x) = fr(x). Let & denote the

for z € X. (1)

“neutral” signal that satisfies this equality, and more generally, let z(p, q) solve prPa) = ¢
i.e. it is the signal required to achieve posterior ¢ starting from prior p.” We will sometimes
use a natural transformation from signal space X into belief space [0,1]. Namely, we
denote by G the distribution (with density g) over posterior beliefs induced by the signal
distribution: for each p,q € [0,1], let G,(¢) = Fp(z(p,q)), where F, = pFy + (1 — p) F.
Disclosure — Conditional on receiving outcome x, the agent may then have the op-

portunity to provide feedback regarding their experience, via direct communication. We

"We will impose assumptions on fp that ensure that both & and x(p, q) are guaranteed to exist and be
unique for all p,q € (0,1).



assume hard evidence and verifiable disclosure (Dye, 1985a; Jung and Kwon, 1988), wherein
a player: (i) with probability « € [0, 1], is able to freely disclose their signal z, and chooses
whether or not to do so; (ii) with probability 1 — «, has no such opportunity, for instance
due to a prohibitively high disclosure cost.®

Payoffs — Each agent values the payoffs to both themselves and future agents, but very
differently. We assume a form of lexicographic preferences, in which players care infinitely
more about their own consumption than that of any other consumer.” Formally, given a
belief p;, agent ¢ chooses a; to maximize their expected consumption payoff a;E(x; — ¢), so
that by Assumption (1.c), at(pt) = Ip,>c. "

On the other hand, once their consumption choice has been made, agents value the
welfare of future consumers equally when making their disclosure choice. Thus, if P2 con-
sumes and obtains the signal z, their value from inducing a belief » upon P3 through their
disclosure choice, while themselves holding belief g, is Va(r | q) = u(r | ¢) = L>c(q — ¢), i.e.
the utility, as judged by P2, that P3 will derive from their own consumption decision.

We will restrict our attention throughout the paper to equilibria in which P2 fully reveals.
This is natural for several reasons. First, truthful revelation is weakly dominant for P2, as
P2 and P3 have fully aligned preferences. Second, we show in Online Appendix A that
truthful revelation by P2 is strictly dominant in the presence of (possibly arbitrarily small)
shocks to players’ payoffs, and is thus uniquely selected by an argument of robustness to
such perturbations.

Turning now to P1, they value the consumption outcomes of both P2 and P3 equally,

hence their continuation value Vi (r | q) is

u(r al(r 1 — a)u(r if r>c¢
Vit @) = (rlq)+al(r|q) +( Ju(r | q) @
0 if r<e,

8In a slight variant of the model, the arrival of agents is random and unobservable to others, occurring
with probability a in each period.

9We discuss this assumption in Section 6.3.

10The weak inequality implies that each agent is assumed to consume when indifferent.



where

A0 =EL6? )= [ @ - s
z(r,c)
denotes the expected consumption value of P3 from P1’s perspective, given that P1 holds
private belief ¢ and that P2 both holds belief r and consumes.

The disclosure rule is a function d : X — {0,1}, where d(z) = 1 denotes disclosure by
P1 of signal x at prior p and d(z) = 0 denotes non-disclosure. We will typically use p to
denote P1’s prior belief, ¢ to denote P1’s posterior belief, and r to denote the public prior
held by P2, which is ultimately determined by P1’s disclosure rule d.

Equilibrium — In order to describe incentive compatible disclosure rules, we must
develop our analysis of belief formation under non-disclosure. If the signal x is disclosed,
it is simply combined with the current belief according to Bayes’ rule (1). If it is not
disclosed, then the update rule must account for all other signals at which non-disclosure
also occurs, as well as the possibility that disclosure was not feasible. For a disclosure rule
d,let D(d) = {z € X | d(z) = 1} and N(d) = X\D(d).'* We have:

o Pd=0]0=H) Q-apta/fyyr fa)ds

P(d=1 - (1—a)+osz(d) fp(z)dz )

p

The relevant incentive compatibility (IC) constraint for the disclosure choice by P1 is then:

for all z € X, d(z) =1 if and only if

Vi(p® | p®) = Vi(p® | p®). (4)

An equilibrium is simply a disclosure rule d for P1 such that: 1) given the non-disclosure

belief p?, d is incentive compatible, and 2) given d, P is correctly computed:

Definition 1. An equilibrium is a disclosure rule d such that (3) and (4) are satisfied.

"For any p < ¢, P1 abstains from consuming (a; = 0) and thus has no signal to report, making D(d)
irrelevant. In what follows we will therefore focus on values p > c.



Let us define the experimentation region of a disclosure rule d as
Xp(d)={z e X |z e N(d) and p° > ¢ > p*}.

A signal z € Xg(d) if under d, P1 chooses not to disclose it, and by so doing induces P2
to consume when they wouldn’t if P1 had disclosed. An equilibrium d is an ezperimentation
equilibrium (EE) if Xg(d) has strictly positive measure. Let € denote the set of all such
equilibria.'? An equilibrium d is a mazimal experimentation equilibrium (MEE) if d € £ and
d € & implies Xg(d') C Xg(d). Thus, the MEE contains the largest experimentation region
out of all EE. As we show below in Lemma 2, the MEE is the welfare-optimal equilibrium

and thus forms a natural benchmark, on which we will later on perform comparative statics.

3 POSITIVELY BIASED AND POLARIZED DISCLOSURE

We now analyze equilibrium disclosure rules. First, we introduce further natural assump-

tions on the signal structure (Smith et al., 2021):

Assumption 1. (1.a) Fy, Fy, satisfy the monotone likelihood ratio property (MLRP).
(1.b) inf, (}%) (x) =0, sup, (}%) (x) = 0.
(1.c) E(x |0 =H)=1and E(x |0 =L)=0.

Assumption (1.a) states that higher signals are more likely in the high state, and that no
perfectly revealing signal exists in either state. Assumption (1.b) is the “unbounded beliefs”
assumption of Smith and Sgrensen (2000), stating that there always exists a signal strong
enough to almost completely overturn any prior belief. Assumption (1.c) is a normalization
ensuring that beliefs and expected payoffs coincide, i.e. E(z | p) = p, and is made simply for

algebraic convenience.!® As in Smith et al. (2021), we further assume that the distribution

12Focusing on experimentation equilibria rules out pathological equilibria that turn on the indifference P1
has over disclosure of extreme signals. For instance, any disclosure profile d such that N(d) C [z, z(p,c))
and p? < ¢ is an equilibrium; for z < z(p, ¢), both disclosure and non-disclosure lead to P2 not consuming,
while for z > z(p, ¢), truth-telling is strictly optimal, as shown below in the proof of Theorem 1.

13 Assumptions (1.a) and (1.c) jointly imply that z < 0,1 < Z.
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of the log-likelihood ratio of signals is log-concave. This ensures an intuitive feature of belief

updating known as “posterior monotonicity” (PM) holds under Bayesian updating.

Assumption 2. Let ¢y(l) denote the state-contingent densities for the transformed variable

I =log(x/(1 —x)). Then ¢y(-) is log-concave for 6 € {0, 1}.

Our first main result below — Theorem 1 — characterizes the structure of equilibrium
disclosure. In order to interpret its content, we introduce two key concepts, polarity bias

and positively selected disclosure:
Definition 2. A disclosure rule d is:

1. Polarized if there exist £, > 0 such that d(p,xz) =1 for all z € [0,e) U[1 —£, 1] and N(d)

has strictly positive measure.
2. Positively selected at p if p? < p.

A polarized disclosure rule is one where extreme signals are disclosed. A positively se-
lected rule is one where the posterior belief formed upon observing no feedback is strictly
lower than the prior, so that “no news is bad news”. Theorem 1 shows that any experimen-

tation equilibrium exhibits both of these features:

Theorem 1. In any EE, player 1 adopts the disclosure strategy:
1 if p*=c

d@) =50 if p® €l

1 if p*<ug,

for some q € (0,c¢).

In equilibrium, P1 discloses only those signals that lie on either side of the inter-
val [z(p,q),z(p,c)], thus exhibiting both polarity and positive selection (since z(p,c) <

xz(p,p) = &). P1 thus thinks along the following lines. If disclosing their experience does

11



not affect P2’s demand, then P1 is happy to do so. This is the case when P1’s experience
is “good enough”, so that leaving feedback does no harm and improves public information.
However, if disclosing leads P2 to not consume (and thus P3 subsequently), P1 discloses only
if they are sufficiently convinced that the product’s quality is low; in this case, P1 would
rather terminate future consumption. Otherwise, they keep their opinion to themselves, as
they would rather give the product a “second chance” by having P2 consume and generate
further information.'* Put simply, P1 is always happy to leave a good review, but thinks

twice about leaving a bad review, and only does so if their experience was sufficiently bad.

3.1 EXPERIMENTATION VERSUS ACCURACY

To provide further intuition for the proof of Theorem 1, we identify the key tradeoff facing
P1 when disclosing, namely fostering experimentation versus improving accuracy. Since
disclosure is verifiable, if P1 wants to distort the actions of P2 they must do so by not
disclosing their experience, causing a rift between their posterior belief and P2’s prior. The
benefit of doing so is that P2 will experiment when they would not have done otherwise.
The cost is that this rift in beliefs will propagate through to P3, as P3 will combine P2’s
disclosed signal with P2’s (incorrect) prior belief. Consequently, from P1’s perspective,
there is a chance that P3 will make consumption errors, i.e. consume when they shouldn’t
or not consume when they should.

To understand the role of such consumption errors more formally, we characterize the
properties of the value function Vi (r | ¢) as both P1’s posterior belief ¢ and P2’s prior belief
r vary, rather than studying disclosure rules directly. From equation (2), it is clear that the
function A is crucial in determining P1’s preferences for strategic disclosure. The following

lemma provides a complete characterization of A.

Lemma 1. 1. 7 — A(r | q) is strictly increasing on [0,q) and strictly decreasing on (g, 1].

2. g N(r | q) is strictly increasing (and in particular affine) for all r > c.

14Note that the restriction to EE’s ensures that pw > ¢ so that P2 consumes conditional on non-disclosure
by P1. There may exist pathological, non-experimentation equilibria wherein g is sufficiently low that pw <c
and P2 does not experiment.

12



3. Ac|e) >0.

Importantly, the map r — A(r | q) is single-peaked at g. Thus, A encodes the loss (from
P1’s perspective) from inducing an incorrect belief, due to consumption errors by P3. The
further is r from ¢, the greater is the likelihood that P3 makes consumption errors. For
instance, when r > ¢, P3 might consume when they shouldn’t (in the event that P2’s signal
x results in ¢* < ¢ < r%), while conversely if r < ¢, P3 might not consume when they
should. Only if r = ¢ do neither of these errors occur. A(c | ¢) > 0 quantifies the option
value from P2’s consumption; note that u(c | ¢) = 0, so while the immediate return from
P2 consuming at belief ¢ is 0, the gain to P3 from such consumption is strictly positive,
as there is a chance P2 receives a positive outcome, acquiring useful information and thus
providing an expected gain to P3.

The question remains whether there exist situations in which P1 resolves this trade-off
in favor of fostering experimentation. Consider posterior beliefs g just below c. Ideally,
P1 would like P2 to consume, but hold the correct belief to minimize consumption errors
as discussed above. Formally, since A(c | ¢) > 0, A(c | ¢) > 0 for ¢ just below ¢ by part
1) of the lemma. However, since inducing a belief below ¢ leads to non-consumption, P1
understands that P2 must necessarily hold an incorrect belief for consumption to occur.
Theorem 1 says that when P1’s posterior is sufficiently close to ¢, they would rather suffer
the loss in accuracy than terminate consumption.

This reasoning also reveals why multiple equilibria may exist. Since r — A(r | q)
is decreasing for r > ¢, the lowest posterior ¢ < ¢ at which P1 is indifferent between
disclosing and not is increasing in the non-disclosure belief . Intuitively, a higher P
implies a greater chance of consumption errors by P3, which dampens P1’s incentive to
foster experimentation through non-disclosure, causing ¢ to be higher and thus sustaining
the higher pm in equilibrium.

We can show, however, that the MEE is ex-ante welfare maximizing across all equilibria,

13



experimentation or otherwise; that is, it maximizes

W(d;p):/ Vilg | @)gp(q) dq+/ Vi(P" | 4)gp(q) dg. (5)
D(d) N(d)

For intuition, note that by fostering maximal experimentation, the MEE also exhibits an-
other key feature; it induces the non-disclosure belief closest to ¢ across all experimentation
equilibria. Lemma 1 part 1 tells us that this property is desirable to P1, as it minimizes
consumption errors made by P3. It is this combination of minimizing errors and maximiz-
.15

ing experimentation that renders the MEE welfare optima Henceforth, we will therefore

focus on the MEE.

Lemma 2. The MEE mazimizes W(d;p), as given by (5), across all equilibrium disclosure

rules d and prior beliefs p € [c,1).

4 U-SHAPED DISCLOSURE WITH RESPECT TO PRIOR

Theorem 1 tells us that non-disclosure occurs on an interior interval of signals, if at all. But
how does this interval depend on primitives, such as P1’s prior belief p, and the disclosure
parameter a?

In this section, we show how the equilibrium disclosure threshold ¢ varies with the prior
belief p. Practically speaking, one can view this exercise as comparing products that differ
in how well-established they are. For instance, if p is close to 1 then the product is well-
established, while for p close to ¢, the product is close to exit. For p in the interior of
this region, products can be viewed as novel. The following result, illustrated in Figure 1,

summarizes these findings and constitutes our second main result:

Theorem 2. There exist a unique belief p € (c,1) and functions q.(p), q(p) : [c,1] — [0, ],

respectively weakly decreasing and strictly increasing, such that:

1. If p € [c,p] then setting ¢ = q.(p) constitutes the MEE.

15The proof of Lemma 2 uses some notation introduced for Theorem 2, and as such it can be found after
the proof of Theorem 2 in the Appendix.
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Figure 1: Equilibrium Non-Disclosure as prior p varies.
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Non-disclosure in the MEE. x-axis: prior p; y-axis: posterior q. Dark-shaded region: non-disclosed posterior
beliefs; light-shaded region: disclosed posterior beliefs. Long-dashed line: incentive constraint, g, (p); short-
dashed line: belief constraint, ¢.(p). Signals inducing posteriors in the interval [¢(p), c) are not disclosed,
where ¢(p) is the greater of ¢,(p) and gc(p).

2. If p € [p, 1], then setting ¢ = q,(p) constitutes the MEE.

The functions g, g, represent two important constraints on strategic non-disclosure. The

first, g.(p), is a “belief constraint” given by

qe(p) = inf {g € [0,1] | ¢(p, q) = ¢} . (6)
where
l1-ap+a fj(g);;)) p*fp(2) dz
<c): ,q) = : , c): ,q) = 7
(@<e): ¢pq) 1= a) 0209 1,5y ds (@>c): ¢pg)=p (7)

is the belief P2 forms if they do not see a signal and P1’s non-disclosure set is the interval
[z(p,q),z(p,c)). In words, ¢.(p) is the lowest belief such that, if all signals that lead to
posteriors in [g.(p), ¢) are concealed, the belief p? following non-disclosure remains above c.

This constraint arises due to a classic form of unraveling: in Theorem 1, we showed that

non-disclosure by P1 is positively selected, and so in order to induce experimentation by

15



P2, P1 cannot conceal signals that are too negative, or else the resultant posterior p? would
drop below c. This constraint tightens as p gets closer to ¢ (q. is decreasing); the closer is
p to ¢, the less room there is for negatively selected non-disclosure to keep p? above ¢ and
thus induce experimentation. Intuitively, when P1’s prior is ¢, even the slightest downgrade
in P2’s belief will stop experimentation.

The second, ¢,(p), is an “incentive constraint” defined by

qv(p) = inf {q € [0,c] | W1 (¢(p, q),q) = 0}, (8)

where Wy is the “relaxed” value function

Wi(rlg)=q—c+al(r|q) +(1—-a)(g—rc), 9)

which denotes P1’s value given a continuation belief r and a private belief ¢, assuming that
P2 consumes and P3 consumes if they do not see a signal; that is, Vi(r | ¢) = L,>.Wi(r | q).

In words, the value g,(p) tracks the lowest posterior at which P1 is indifferent between
disclosing and not, assuming posteriors in [g,(p), ¢) are concealed in equilibrium. In proving
Theorem 2, we show that g, is increasing, a result that constitutes yet another expression of
the experimentation-accuracy trade-off. Intuitively, when p is close to 1, the continuation
belief r is also close to 1, regardless of P1’s disclosure strategy. As such, non-disclosure
plays little role in altering P2’s experimentation incentives, and in fact would only induce
P3, being less well-informed, to make more mistakes in their consumption choice. Thus, the
range of beliefs ¢ just below ¢ at which P1 would prefer to induce experimentation vanishes.

Combining the two constraints, the non-disclosure region is [g(p),c|, where ¢(p) =
max{q.(p), ¢»(p)}. Intuitively, if ¢,(p) < ¢c(p), then signals just greater than z(p,q,(p))
cannot be concealed in equilibrium, despite there being an incentive to do so. For if they
were, the resultant non-disclosure belief p? would be below ¢, meaning experimentation
would fail. Conversely, if ¢,(p) > ¢.(p), then even though the signal z(p, q.(p)) could be

concealed in equilibrium and keep pw > ¢, there is no incentive to do so.
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Note that the result relies on incentives that are distinct from the classic unraveling
mechanism (Milgrom, 1981; Grossman, 1981; Dye, 1985a). In particular, the classic result
does not depend on the prior distribution, whereas it does in our analysis. The key dis-
tinction is that in our setting, the sender’s preferences over induced posterior beliefs are
type-dependent, whereas in the classic setting, each type strictly prefers to induce the high-
est possible posterior. This type-dependence stems from the misaligned preferences at the
heart of the model: for an intermediate range of signals, P1 strictly prefers to induce P2 to
hold the lowest belief at which P2 still plays R and thus experiments, as described above.
Outside of this range, P1 strictly prefers to have P2 share their belief. This complex pattern
of experimentation is critically linked to the ex-post optimality of disclosure; we will show
that it fails to hold when agents can commit to a disclosure policy prior to receiving their

signal (Kamenica and Gentzkow, 2011).

5 SUBSIDIZING DISCLOSURE

Theorem 2 uncovers the complex relation between the degree of non-disclosure and the prior
belief p, due to the two key constraint functions q., ¢, working against each other. But how
are these constraints themselves determined by the ability to disclose, a? The following

result answers this question.

Theorem 3. Fiz p € (¢,1). Then there exist 0 < a(p) < 1 such that ¢ — q is strictly

increasing for all a € [0,a&(p)) and strictly decreasing for all a € [&(p), 1).

Intuitively, when « is high, disclosure opportunities abound. This makes it harder for P1
to strategically non-disclose, as there is no room to “hide” behind a lack of disclosure oppor-
tunities. In contrast, when « is low, disclosure opportunities are rare, so less information is
transmitted and thus beliefs are more persistent. As such, inducing incorrect beliefs comes
with a greater chance of consumption errors by P3, which in turn makes non-disclosure
less desirable to P1. Thus, for high «, P1 is unable to induce experimentation through

non-disclosure, whereas at low «, they are not willing to. These counteracting forces result
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in the experimentation region being non-monotone in «, converging to the empty set when
« tends to 0 or 1.

Formally, we first show that the belief constraint ¢, is increasing in «, converging point-
wise to ¢.(p) = c for all p < 1 as @ — 1. In contrast, the incentive constraint g, is decreasing
in «, converging pointwise to ¢,(p) = ¢ for all p < 1 as a — 0.

Taking the view that 1 — « captures the fraction of consumers who find it prohibitively
costly to leave feedback, Proposition 3 speaks to a commonly proposed intervention, namely
that review platforms should attempt to subsidize costly feedback in order to generate more
information and help consumers discover high-quality products more efficiently (Marinescu
et al., 2021). Our finding cautions against a broad-brush approach to such an intervention,
as there exist situations in which such a subsidy (increasing a) paradoxically reduces dis-
closure (when a < @(p)), as well as others where it stimulates disclosure, but leads to less

experimentation (when o € [a(p), 1)).

6 DISCUSSION

6.1 MODEL DISCUSSION

Our model differs from standard social-learning settings in some important ways. First,
whereas typically agents’ private signals are hidden while their consumption choices are
public (Banerjee, 1992; Bikhchandani et al., 1992), here it is the reverse, in the sense that
(some) private signals are publicly disclosed.'® Second, whereas typically agents receive a
private signal prior to making a consumption choice, here our agents can only receive their
signal if they consume. In our setting, the link between actions and private signal acquisition
is crucial; were future agents to receive (and then disclose) private signals regardless of

their predecessor’s action choices, current agents would never seek to distort these choices

SWolitzky (2018) also studies a social learning model with unobservable actions, but with observable
outcomes and without strategic behavior. Bowen et al. (2023) study social learning from signals shared on
social media, but here again the sharing is non-strategic. Closest is Acemoglu et al. (2024), in which agents
decide optimally whether to share pieces of information they receive, but aiming here to maximize re-shares
and minimize dislikes by others.
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by withholding information, and thus full revelation would be optimal. We thus view our

paper as belonging more to the literature on experimentation.

6.2 CHEAP TALK AND PERSUASION

As discussed in the introduction, our modeling of feedback as verifiable disclosure is moti-
vated by: (i) the absence of commitment on the part of consumers as to when to leave or
not leave feedback, and the large proportion who elect not to; (ii) the fact that many online
reviews left by consumers, and especially those that platforms make most salient, convey
credible information; (iii) the selection and polarization biases in the reviews that are left.

To understand the role of the lack of commitment we analyze, in Online Appendix B,
communication under persuasion. Then, to recognize the fact that many fraudulent or even
purchased fake reviews still escape the platforms’ scrutiny and regulators’ efforts to curb
them,'” we analyze in Online Appendix C the case of cheap-talk, and also compare it with
that of disclosure. We summarize below the main results of both cases.

Persuasion — We first examine the benchmark wherein P1 can commit to an arbitrary
messaging rule prior to receiving their private signal x (Kamenica and Gentzkow, 2011).
We take a = 1 for simplicity. Recently developed techniques in the persuasion literature
allow us to completely characterize the solution (Dworczak and Martini, 2019).

Summarizing the results, communication under persuasion is again both polarized (pool-
ing takes place on an interior interval) and positively selected (the average belief conditional
on pooling is ¢, which is less than the prior p). In contrast to the disclosure benchmark,
however, this pooling interval remains even when the prior p is close to ¢. We refer the
reader to Online Appendix B for full details.

Cheap-Talk — We next contrast our baseline results with the case of cheap-talk com-
munication. To summarize our findings, assuming again « = 1 for simplicity, we find that
all equilibria are partitional. This property follows almost directly from the single-crossing

properties of A, as summarized in Lemma 1. Furthermore, we show that the partition

17See for example https://tinyurl.com/2p9s5ehz in the case of the United Kingdom.
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of any equilibrium admits finitely many cells on [z(p, c), 1], so that signals that generate
posteriors above ¢ are pooled into finitely many intervals; see Proposition C.1 in Online
Appendix C for details. This characterization is in stark contrast to Theorem 1, as well as
to the one under commitment (Lemma B.1 in Online Appendix B), both of which exhibit
a “separate-pool-separate” reporting structure.

While the equilibrium outcome is quite different across the three forms of communica-
tion, all three share a similar driving force, namely a preference toward biasing “upward”.
In Theorem 1, this force is what drives types with posteriors ¢ < ¢ to prefer inducing the
(higher) belief ¢. Under commitment, it is the same force that induces pooling (Lemma
B.1). In contrast, under cheap talk, this same force generates a ripple effect for all higher
types, whereby to preserve incentives, information transmission must necessarily be coarse
throughout [z(p,c), 1] (Proposition C.1). Put differently, we see here an alternative mani-
festation of the same underlying accuracy-experimentation trade-off identified in Section 3:
in order to foster experimentation by P2, equilibrium almost always induces consumption
errors by P3. These represent complementary insights to those obtained under disclosure
and persuasion; allowing for biased, ex-post optimal reviews greatly undermines the infor-
mativeness of consumer feedback, as almost all reviews induce inaccurate beliefs.

Our results on both cheap-talk and persuasion also feature prominently in Smirnov
and Starkov (2024), who independently study the same model with both cheap-talk and
persuasion. Over three-periods, our results (Proposition C.1 and Lemma B.1) and theirs
align. Smirnov and Starkov (2024) also extend their analysis to the infinite horizon; they
show how their analog of Lemma B.1 (pooling at intermediate values under persuasion)
extends, but are not able to extend that of Proposition C.1 (partitional structure under

cheap-talk).

6.3 LONGER HORIZONS

The three-period horizon on which we focus provides the simplest, most transparent setting

in which strategic (non-)disclosure for purposes of inducing experimentation will arise. At
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least three agents are required for the preference structure we employ to induce intertempo-
ral conflict. Furthermore, our three-period model ensures that full disclosure is employed
by P2 independent of their belief. P1’s preferences over what belief to endow P2 with are
thus shaped exclusively by their desire to induce experimentation by P2, rather than their
desire to shape subsequent disclosure by P2. This feature of equilibrium disclosure greatly
simplifies our analysis, and it is unlikely to hold over longer periods. For instance, were
we to introduce a fourth agent, Theorem 2 tells us that now, P2’s disclosure rule will be
non-monotone in (and in particular, not independent of) their belief, implying that P1’s
disclosure rule must account for both P2’s consumption choice as well as their subsequent
disclosure rule. This added complexity is not an artifact of finite horizon, non-stationary
analyses, and is likely to persist were we to extend our analysis to infinite horizon models.'®
That said, we are confident that certain results, for instance, polarized disclosure and the
non-monotone comparative results regarding o will extend to the infinite horizon."’

One potential source of this complexity is the richness of the signal space. This was
central to developing a theory of polarized disclosure, which requires at least three signal
values. Adopting a signal space with only three values might afford sufficiently tractability

to extend our model to longer horizons. Of course, these thoughts are speculative, and we

leave a rigorous treatment of these avenues for other interested researchers.

7 CONCLUSION AND FUTURE WORK

We studied a model of strategic information transmission, driven by a tension between
selfish consumption and pro-social disclosure. Our analysis sheds light on an important
question: when might consumers choose not to leave feedback in order to improve over-

all welfare? We showed that equilibrium disclosure is necessarily polarized and positively

80ne could consider a model where each agent discounts exponentially all future payoffs, or an overlapping-
generations model in which only the two following agents matter. In such models, it is likely that any
stationary Markov perfect equilibrium will feature disclosure that is again non-constant in current beliefs.
A full analysis of such extensions is beyond the scope of the current paper.

19 As long as the sender values accuracy, they will disclose signals that are sufficiently informative. It also
seems likely that full disclosure will obtain in the limits as o — 0, 1 over longer horizons, while full disclosure
cannot be an equilibrium for interior a.
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biased, two well-established empirical regularities found in consumer reviewing behavior.
We further showed that disclosure is hump-shaped with respect to both agents’ prior and
their opportunities for leaving reviews. This latter result cautions that making feedback
less costly could potentially reduce experimentation. Of course, we do not claim that help-
ing future consumers is the sole motivation for leaving feedback. For instance, the survey
quoted in the introduction also suggests that expressing one’s opinion is another leading
factor. Combined with disclosure coming at a cost, this would readily deliver polarized
disclosure. Further combining with an exogenous bias toward expressing positive feelings
would then deliver positively selected disclosure.?’ Formulating such a theory is undoubt-
edly an interesting avenue for future research and would complement our paper nicely. We
view our analysis as an important first step toward understanding a very natural mechanism
for the existence and biases of reviews — that consumers might be pro-socially motivated

when leaving feedback.

2Hui et al. (2024) find empirical evidence for polarized reviews, but that bias can in fact be either positive
or negative and depends on the age and reputation of the firm
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A  PROOFS

A.1 PROOF OF LEMMA 1

To prove the first part of the lemma, it suffices to note that W is proportional to ¢*(™¢) — ¢,

which has the sign of ¢ — r, by the MLRP. To prove the first part of the lemma, it suffices to note
that W has the sign of ¢*("¢) — ¢, (since dz(r, ¢)/0r < 0 by the MLRP), which itself has the sign
of ¢ — r by the MLRP and is thus negative for ¢ < r. For the second part, basic algebra confirms
that:

A(r|q) = q(1 = Fu(x(r,c))(1 = ¢) + (1 = ¢)(1 = Fr(z(r, ¢)))(=c). (A1)

When P1 holds belief ¢ and P2 belief r, P1 believes the state is high with probability ¢ and that P3
will consume with probability 1 — Fg(x(r,c)), receiving a payoff 1 — ¢, and similarly when the state

is low. The third part follows from

Alc|e) = /x(cz —¢) fe(2)dz > 0,

since ¢® > ¢ for z > Z.

A.2 PROOF OF THEOREM 1

We first leverage Lemma 1 to characterize V;. To do so, it is often convenient to study the “relaxed”
value function Wi(r | ¢). From equation (9), it is straightforward to demonstrate that W, obtains

the same properties as A, since u also preserves these properties.

Lemma A.1. 1. r+— Wi(r | q) is strictly increasing on [c,q) and strictly decreasing on (g, 1].
2. q— Wi(r | q) is strictly increasing (and affine) on [0, 1].

3. Wi(e]e) > 0.

To establish the result, note first that following a signal leading P1 to hold a posterior ¢, their
disclosure decision hinges on the sign of Vi(¢ | ¢) — Vi(p? | ¢). First, we show that disclosure occurs

in equilibrium for all signals such that p® > ¢, i.e. for sufficiently high signals.

Lemma A.2. (Positive Selection) If p* > ¢, then d(x) =1 is a strictly dominant strategy.
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Proof. The proof proceeds in two cases. Let ¢ = p*. First, suppose that p? < ¢ < ¢, so that

non-disclosure causes consumption to stop. Then, using (2),

Vi(p" | q) =0 <u(g|q) +aA(g|q) + (1 —a)ulq|q) =Vi(g|q),

since by Lemma 1,

T

Algla) > Ale]q) 2A<c|c>:/ (¢ — ) fulz)dz > 0.

x

Next, suppose that p? > ¢, so that non-disclosure leads to consumption (and subsequent disclosure

by P2) in spite of a lower belief. In this case,

Vilgl @) = Vi®" ) = a [Alg | 9) = AG" | @)] = 0.

since the first part of Lemma 1 showed that that r — A (r | ¢) is maximized at ¢, for ¢ > c. O

Lemma A.1 then implies that if non-disclosure occurs in equilibrium, it must take an interval
form; D(d) = [g,c|. Finally, that ¢ > 0 follows from the fact that Vi(r | 0) < 0= V;(0 | 0) for r > ¢;

thus, by continuity, revealing is strictly preferred to inducing experimentation for sufficiently low g.

A.3 PROOF OF THEOREM 2

To establish Theorem 2, we will use a series of lemmas characterizing beliefs following non-disclosure
and the functions ¢.(p), ¢,(p). We start with properties of ¢(p,q), which as defined in (7) denotes
the continuation public belief if signals in the range [z(p, q), z(p, c)) are not disclosed. We showed
in Theorem 1 that, if non-disclosure happens, it is over an interval of exactly this type, so ¢(p, q) is

indeed the relevant computation for the equilibrium belief p? following non-disclosure.

Lemma A.3. 1. For p > ¢, ¢ — ¢(p,q) is strictly increasing and differentiable on [0,c|, with
¢(p,0) € (0,p) and ¢(p,c) = p.

2. For q <e¢, p+— ¢(p,q) is strictly increasing on [c, 1].

Proof. For part i), differentiability is clear, and d¢(p, ¢)/0q has the sign of

02(p,9) +v.0)

dq

z(p;c)
(1-—a)+ a/ dF,(z)

(p,9)

ox(p, z(p,c)
+ J?(p Q) (1 70[)])4’0&/ pzde(Z)
dy z(p,q)

27



Given that ¢ — x(p, q) is increasing by the MLRP and p*P9) = ¢ that sign is also that of

z(p,c)

(1—a)(p—q)+a/( ) (p* — q) dFy(2) >0,

since ¢ < ¢ < p and p* > ¢ for z > x(p, q). The bounds on ¢ — ¢(p, ¢) follow immediately.
For part ii), let us first re-write ¢(p, q) as
(1 —oz)p—&-aff(p’c) p*fp(z)dz (1 —a)p+achrde(r)

_ (p,q) _ .
p.9) (1—a)+a f;’((;’qc)) [p(2)dz (I-a)+a ch dGy(r)

Let a(p) = quTde(’/‘) and b(p) = ch dG)(r). By Proposition 4 in Smith et al. (2021), Assumption

i (1) >

In our case, P»’s not having received a signal may also be due to P1 not having had the opportunity

2 implies that

to leave feedback, which occurs with probability 1 — «. As a result, d¢(p, q)/Op has the sign of

(1 =)+ ab(p)][(1 — ) + ad’(p)] — [(1 — a)p + aa(p)][ad’ (p)]

= (1 —0a)’ + (1 = a)ad'(p) + ab(p)(1 — @) — a(l — a)pb'(p) + a* (b (p)a(p) — b(p)d’ (p))
>0

> a(l —a)(d'(p) —pbt/(p) + b(p)).

thus proving the claim.

We now define and characterize the belief constraint: for p > ¢, let

qc(p) = inf {q € [0, 1] | &(p, q) > c}. (A.2)
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Lemma A.3 and Corollary A.3 tell us that p — ¢.(p) is well-defined on [¢, 1]. We now establish key

properties of the function ¢.(p)

Lemma A.4. The map p — q.(p) is everywhere continuous, with q.(c) = c. Furthermore, there

exists p. € (c,1) such that: (i) on [e,Pc], qc(p) is strictly decreasing, differentiable and solves

¢(pa QC(p)) =c5 (“) on [ﬁCa 1] QC(p) =0.

Proof. Note that p — ¢.(p) is defined as the minimum of a continuous function, (¢ — é(p,q)),
on a compact set. Therefore, the infimum is attained by Weierstrass’ Theorem, and continuity
follows from Berge’s Theorem (note that the constraint ¢(p,q) > defines an upper-hemicontinuous
correspondence, since ¢(p, ¢) is continuous). That g.(c) = ¢ follows from Corollary A.3, part 2.

Next, that there exists a p. € (¢,1) such that ¢.(p) = 0 for all p € [p.,1] follows from the
definition of ¢(p, q), since as p — 1,

(1-a)-14+a-1
I1—a+0 B

o(p,0) — L

Finally, that p — ¢.(p) is strictly decreasing on [c, p.| follows directly from Lemma A.3. O

Having characterized the “belief constraint” ¢.(p) bearing on P1’s disclosure rule, we next turn
to the “incentive constraint” g, (p).

To begin, we demonstrate that disclosure is strictly optimal after sufficiently extreme signal
realizations. We do so by proving a property of the relaxed value function Wi (r | ¢) defined in

Section 3.1.

Lemma A.5. For allp € [c, 1),

lim [W1(b(p,q) | ¢) = Vila [ q)] <O.

q—0,1

Proof. The lower limit follows immediately since A(r | ¢) < 0 and g — ¢ < 0 for sufficiently small gq.

The upper limit is obtained by noting that as ¢ — 1, V1(¢q | q) achieves the upper bound on V3. 0O
Away from these limits, note that the minimization defining ¢, (p) is well defined:
Lemma A.6. The map p— q,(p) is well-defined, with q,(p) < ¢ for all p € (¢,1) and ¢,(1) = c.

Proof. Note that Wi(r | ¢) > 0 for all r € (¢, 1), since A(r | ¢) > 0. Furthermore, for ¢ sufficiently

close to ¢, ¢(p,q) > ¢, so that Wi(¢(p,q) | ¢) > 0. Thus by continuity, Wi(¢(p,q) | ¢) > 0 for ¢
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in some neighborhood below ¢. Lemma A.5 combined with the Intermediate Value Theorem then
implies there exists ¢’ € (0, ¢) such that Wi (¢p(p,q') | ¢) = Vi(q' | ¢) = 0, thus proving that ¢,(p) < ¢
for all p € (¢,1). On the other hand, W1(1 | ¢) = 0, so that by Lemma A.1, Wi(1 | ¢) < 0 for all
q < ¢, and thus ¢,(1) = c. O

Lemma A.7. The map p — q,(p) is continuous and strictly increasing.

Proof. For p > ¢, let ¢(p) < ¢ be any solution to the equation Wi (é(p,q),q) = Vi(q | ¢). From
Lemmas A.1 and A.3 and the chain rule, it follows that if ¢(p) < ¢, then ¢’(p) > 0. Therefore,

p — ¢,(p) must be strictly increasing. O

Taken together, these lemmas immediately show that the two loci g. and ¢, cross at a unique

interior point:
Lemma A.8. There exists p € (¢, 1) such that q,(p) < q.(p) if and only if p < p.
Proof. Follows from Lemma A.4 and Lemma A.7 part ii). O

To complete the proof of the theorem, we proceed in two cases:

1. If g,(p) € [0,q.(p)), then setting ¢ = g.(p) defines the MEE. To see this, note first that the
equilibrium belief condition (3) is satisfied by definition. Next, we will verify the IC condition
(4), which in this case amounts to Vi(c| ¢) > Vi(q | q) for all ¢ € [¢.(p),c). But if ¢,(p) < ¢.(p)

then ¢(p, ¢, (p)) < ¢(p, ¢.(p)) = ¢ by (A.3), and so for all ¢ € [g.(p), ¢),

Vile ] q) =2 Vi(é(p,qc(p)) | @) = Wi(9(p,qe(p)) | ) = Wi(d(p, qu(p)) | @) =0 =Vi(q| q),

with the first equality holding since Vi (r | ¢) = Wi (r | q) for all » > ¢, and the second one holding
by Lemma A.1. This verifies incentive compatibility. That g defines an EE is then immediate.
To verify that this is a MEE, note that were ¢ < ¢.(p), then one would have ¢(p,g) < ¢ and thus

no experimentation by P2 could be supported.

2. If q,(p) € [gc(p),c), then set g = ¢q,(p). Again, (3) is satisfied immediately since g,(p) > q.(p).

Next, note that ¢ = ¢,(p) > ¢c(p) implies that ¢(p,q) = ¢(p, ¢c(p)), and so Wi(¢(p,q) | ¢) =
Vi(o(p,q) | g) > 0 for all ¢ € [g,¢). Thus, (4) is verified. Furthermore, since (4) is binding, this

must also be a MEE (setting g < g, (p) would violate (4)).
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A.4 PROOF OF LEMMA 2

Consider first any d € £ that is not the MEE, d*, and which has an associated threshold g, (charac-
terized by Theorem 1). By definition of the MEE, it must be that g; > g (we suppress the relation

of ¢ on p throughout this proof for convenience). We then have that

C

’ Vi(o(p,a) | 9)gp(q) dg + / Vi(o(p,a) | 9)gp(a) — Vi(o(p,aa) | @)l 9p(q) dg

4q

W(d";p) —WI(d;p) = /g

aq

> [ W60 | 09p(0) ~ V610 2.) | 0] 50) g

> [ W60 | (@) - Vilor.0) | 0l gyl da

d

:O,

where the first inequality holds since g > ¢,(p) by construction, and hence Vi(¢(p,q) | ¢) > 0
for g € (g,4q,], and the second inequality holds since r — Vi (r | ¢) is strictly decreasing on [0, ¢] for
q €10,c] (Lemma A.1) and ¢ — ¢(p, q) is strictly increasing (Lemma A.3).

Finally, note that any equilibrium d that is not in £ supports precisely the welfare under full

disclosure, as experimentation is not induced with positive probability. Hence,

W(d*;p)—W(d;p)=/ Vi(o(p:a) | 9)9p(q) dg

>0

by the same reasoning.

A.5 PROOF OF THEOREM 3

Lemma A.9. 1. For fized p € (¢, 1), there exists &(p) € (0,1) such that q.(p) is strictly increasing

in a for a € [a(p),1] and q.(p) = 0 otherwise. Furthermore, limq—1 q.(p) = c.

2. For fixed p € (¢,1), q,(p) is strictly decreasing in . Furthermore, lim,_,0 q,(p) = c.
Proof. For part i), note that by Lemma A.3, ¢ — ¢(p, q) is strictly increasing. Furthermore, from
equation (7), ¢(p,q) is strictly decreasing in a. Since ¢.(p) solves &(p,q.(p)) = ¢, this proves the

first claim. For the second part, note that from equation (7), lim,—1 ¢(p,q) = E(r | r € [¢,¢]), and

hence lim,—,1 ¢(p, c) = ¢, while lim,_,0 ¢(p, ¢) = p, and hence lim,_,¢ ¢(p, c) = 0.

31



For part ii), note that OW1(é(p,q) | ¢)/0q > 0, as asserted in Lemma A.7. Next, by Lemma
A3, ¢ = ¢(p,q) is strictly increasing. Thus, the first part of the claim obtains provided that
oW1 (é(p,q) | ¢)/0a > 0. To see that such is the case, note that OW1y(r | ¢)/0r > 0 as argued in

Lemma A.7, and from equation (7), ¢(p, q) is strictly decreasing in «. Finally,

% =Ar|qg)—(¢g—c)= /;T’C) (¢° — o) fr(2)dz > 0,

since ¢* > ¢ for z > z(r,c). Hence

> 0.

Wi (é(p,q) | g) — OWA(r | q) n OW1(r | q) 9¢(r, q)
oo n Oa or da

To prove the second part, we proceed as in Lemma A.G; note that Wi(p | ¢) > 0 for all p € (¢, 1)

and all a € (0, 1), and thus g,(p) < ¢, while for « =0, Wi(p € ¢) = 0, so that ¢,(p) = c. O

Finally, we can put these results together to prove the theorem. For p € (¢, 1), let @(p) be that
value of « such that g,(p) = ¢.(p). Such a value exists and lies in (0,1) by Lemma A.9, as we have

that ¢,(p) = ¢ > ¢.(p) at o = 0. Finally, &(p) < 1 since p < 1 for all « € (0,1).

32



ONLINE APPENDIX
“(PRO)-SOCIAL LEARNING AND SELECTIVE DISCLOSURE”

Roland Bénabou, Nikhil Vellodi

A  HETEROGENEOUS PAYOFFS

We now extend the analysis to allow for heterogeneous payoffs, by introducing an idiosyn-
cratic component to utility. We also relax the restriction to equilibria in which P2 is assumed
to fully disclose. Besides adding realism this will serve to show that, under general condi-
tions on the form of this heterogeneity, disclosure is still polarized and positively biased,
and that all equilibria are necessarily EE’s in which P2 strictly prefers to disclose.

Let the payoff to agent ¢t from receiving signal x now be z¢;, where each ¢ is drawn
from a distribution H, independently from x. Without loss of generality, we assume that
E(e) = 1 and H has full support on [0,00), with a density h that is everywhere positive.
We further assume that the realization of their own ¢; is observable to an agent prior to
their consumption decision —e.g., it represents the intensity of their need for such a product—
whereas the value xe; (or, equivalently, x itself) is revealed only when consumption occurs.
Thus ¢; guides the experimentation decision a;, but when a; = 1 the relevant information for
the disclosure decision d; remains x itself, since ¢; is irrelevant to any successor. Formally,
consumption rules now map both from beliefs and shocks, i.e. a; : [0, 1] x [0,00) — {0,1},
while disclosure rules remain as before.

The expected values, from P1’s perspective, of subsequent players’ consumptions are

now:

ur 9= [ " (ge — &) dH (@),

T

1 oo
Al =Eeclutre o) = [ [ (ae=e)dnear,(2).



We start with some basic properties of u and A.
Lemma A.1. 1. Both maps r+— u(r | q) and A(r | q) are strictly mazimized at q.

2. Ar | q) > (>)ulr | q) for all r < (<)gq.

2

Proof. Direct calculation verifies that % =—5 (% — 1) h (f), which is equal to zero if and

only if ¢ = r. Since A(r | ¢) = Ec .(u (r%¢ | ¢¢)), point 1 is verified. To verify point 2, note

that

1 00
Ml =utrl) = [ [ (@e-gan@ar e —ur o
= /Ox /Coo (¢°e — c) dH (€)dFy(z)

1 00
Jr/g2 / (g% — ) dH (e)dFy(z) —u(r | ¢) = 0,

>u(rlq)

where the last inequality holds because z — ¢”e¢ — ¢ is positive on the range [c/r*, 00) by

the MLRP, since by assumption r < q. O

Note that since Va(r | ¢) = u(r | ¢), Lemma A.1 implies that full disclosure by P2 is a
strictly dominant strategy. In Section 2, P2 was indifferent over posterior beliefs that induce
the same action by P3. Now, greater accuracy leads to a strictly lower chance of erroneous
consumption choices by P3 due to idiosyncratic shocks.

As before, this allows us to simplify player 1’s value function,

mv|@:uvqw+@cwm0|@+u—a+au—cw»mmq0, (A1)

where
[oe)

Clr) = / dH ()

r

is the probability of consumption given a prior belief r, prior to the realization of e.



A.0.1 SELECTED DISCLOSURE

In order to draw comparison to the results in Sections 3 and 4, we first adapt the definition

of experimentation equilibria in the most natural manner. Now, let
Xp(0) = {z € Ni(d) | as(p’,€) > as(p”,¢) Ve € [0,00)}
denote the experimentation set for an equilibrium o. First, we recover the result of polarized

disclosure.

Lemma A.2. (Polarized disclosure) Fiz r € (0,1). Then, limg01[Vi(q|q) — Vi(r|q)] >

0.

Proof. For the lower limit, note that

T

oo 1 poo
u(r | 0) = / —cdH(e) <0, A(r]0) :/0 // ] —cdH (e)dFy(z) <0,

whereas u(0 | 0) = A(0 | 0) = 0. Thus, by the expression for Vi(r | ¢) given in (A.1),

Vi(r | q) < 0="Vi(q] q). For the upper limit, note that

sein= [ 7 e aanan.

which is strictly increasing in 7 by the MLRP, since the integrand is strictly positive. Sim-
ilarly, » — wu(r | 1) is strictly increasing. Finally, r — C(r) is also strictly increasing, and

thus so is 7+ Vi (r | 1). Therefore, the claim is verified. O

Next, we demonstrate that for any prior p € (0, 1), any posterior ¢ > p (i.e. any signal
x > &) is disclosed by P1. Note that whereas in the baseline model (Lemma A.2) it was

dominant for all posteriors ¢ > ¢ to be disclosed, here this is no longer necessarily the case.
Lemma A.3. If p* > p, then di(z) = 1 is a strictly dominant strategy.

Proof. Suppose not, so that there exists an = > Z such that dy(z) = 0. Take the largest



such x and let ¢ = p*. By construction, to satisfy the equilibrium belief condition (3) it
must be that p? < ¢. But then by Lemma A.1, u(p? | ¢) < u(q | ¢) and AG®® | q) < Alq] q),
while we also have C(p?) < C(q) as r — C(r) is strictly increasing. Combining, we have

that V(5 | ) < Vi(q | q). -

Finally, we prove that non-disclosure of signals that convey marginally bad news (namely,
such that the posterior p® is just below the prior p) is optimal. This result has no direct
analog in the baseline model, insofar as non-disclosure now occurs at signals the revelation

of which would have induced consumption with strictly positive probability (¢ < p* < p).
Lemma A.4. (Positive selection) Let Vi(q) = Vi(r | q). Then V{(q) > 86—‘21|T:q.

Proof. Since ‘71/(q) = OVi(r | q)/0r|r=q + OVi(r | q)/0q|r=q, the claim is equivalent to

proving that OVi(r | q)/0r|p,=q > 0. But

oVil(r | q) ou c c
EALTAGE VAR R X A NP 1-
o == gr_ Tl ) |Mala = Cl@)ula]g)
=0
c\ [OA ou
+C =g (1 = C(q)) o~ lr=¢ —C"(@)ulq | q)
q or or
=0 =0
c c. [c
—A (S ulglSn () >o,
(¢14q) <q> (q!q)q2 <q>
where the last inequality holds because C(q | ¢) < 1 and A(q | ¢) > u(q | q). O

In particular, for * = & — ¢ where ¢ is small, non-disclosure is optimal. Combining
Lemmas A.3 and A.4 with a continuity argument yields that non-disclosure takes place in
(at least) some interval [Z — e, %), and thus disclosure is positively biased. Furthermore, we

have:
Lemma A.5. Any equilibrium is an EF.

Proof. To see that all equilibria admit a non-empty experimentation region, note that Lem-

mas A.2 and A.3 imply that in any equilibrium o, for each p there exists a minimal posterior



q(p) < p that is concealed. Continuity of r — Vi(r | ¢) then ensures the existence of a 6 > 0
such that posteriors in the interval [g(p), g(p) 4+ ) are concealed. But for § sufficiently small,

a(p) +9 < p, and so [g(p),q(p) +0) C Xg(0). O

B OpPTIMAL FEEDBACK — PERSUASION

We now turn to the benchmark wherein P1 can commit to an arbitrary messaging rule prior
to receiving their private signal z (Kamenica and Gentzkow, 2011). Formally, P1 chooses an
information structure, consisting of a message space S along with a collection of conditional
probabilities (7(- | ))zex, where 7(s | ) denotes the likelihood of P1 sending the message
s given that they received signal x. Let M = X U {0} denote the (rich) message space that
naturally associates messages with outcomes, as well as a privileged message () that denotes
no signal reported. We may take S = M. Since communication is no longer constrained
to be verifiable, we can set & = 1 without loss of generality. Contrasting this case with
that of hard-evidence disclosure will thus shed light on how ex-post IC constraints shape
optimal feedback. Recently developed techniques in the persuasion literature allow us to
completely characterize the solution (Dworczak and Martini, 2019). Denote Vi(q | ¢q) by

Vi(q) for simplicity. The following result is illustrated in Figure 2.

Theorem B.1. There exist ¢*(p) < ¢ < @*(p) such that the solution to the persuasion
problem takes the following form: reveal x if either p* < g*(p) or p* = q*(p), and pool all

x such that p* € [¢*(p), 7" (p)). Furthermore, ¢*(p),q*(p) solve

7 (p)
* i * quP(Q)
Ep(a| g€ [d'(p).7' () = 40— =, (B.1)
fg*(p) dGyp(q)

and

i@ (p) _ ) —a* () (B.2)

Vi(e) c—q*(p)

Proof. Since g — Vi(r | q) is affine, standard arguments imply that the problem faced by



P1 under commitment is to solve

1
v*(p) = LR /0 Vi(q) dH (q), (B.3)

subject to the constraint that H is a mean-preserving contraction of G, (Kamenica and
Gentzkow, 2011). First, we prove that V7 (q) is convex on [c, 1]. To see this, note that Lemma
1 implies that Vi(q | ) = sup,cp 1) Va(r | ¢) for ¢ € [c, 1], and that g — Vi(r | ¢) is affine.
The convexity of V1(q) then follows from standard results in convex duality (Rockafellar,
1997, Theorem 13.2).

We may now apply (Dworczak and Martini, 2019, Theorem 1). In particular, consider

the function v defined by

Vi(q) if p* > q*(p)
¥(9) =4 Vi(e) (q_g‘*(”)> if p*elg*(p),7(p))

c—g*(p)
Vi(q) it p* < q¢*(p),

and the distribution H,, : [0, 1] — [0, 1] defined by

Gp(q) it p® > q*(p)
Hp(4) = 4 Gyle) + Lg=elGp(T (p) — Gpla*(0))] if p* € [a*(p), T (D))
Gp(q) if p* < q*(p),

which reveals ¢ when either ¢ > ¢*(p) or ¢ < ¢*(p) and pools otherwise. It is readily
verified that ¢» and H together satisfy conditions 3.1-3.3 of (Dworczak and Martini, 2019,
Theorem 1), and thus constitute a solution to the commitment problem. Finally, note that

since ¢ — Gp(q) is continuous and strictly increasing, so too are ¢*(p), 7*(p). O

Communication under persuasion is also both polarized (pooling takes place on an inte-

rior interval) and positively selected (the average belief conditional on pooling is ¢, which



Figure 2: Persuasion Solution

Separate Pool e Separate

Disclosure under commitment. Value function Vi(g) = Vi(q | q): solid black lines. g*,¢" are determined by
both E(q | g € [¢*,7")) = c and lying on a straight-line segment 1 (q) (dotted red) intersecting V1 (q) at ¢, G"
and c.

is less than the prior p). In contrast to the disclosure benchmark, however, this pooling
interval remains even when the prior p is close to c¢. Crucially, under persuasion, P1 can
“pool down” by pooling posteriors above ¢ with those below ¢, while still averaging to ¢
(equation (B.1)). This allows them to maintain a positive-measure pooling interval as the
prior p converges to either ¢ or 1. In contrast, under disclosure such pooling down cannot
occur, since P1 finds it ex-post optimal to disclose (separate) at all posteriors above ¢. This
heavily constrains their ability to not disclose at posteriors below c¢. The logic presented
here highlights the role of ex-post optimality (equation (4)) that disclosure rules must satisfy

in shaping optimal feedback.

Corollary B.1. Both ¢*(p) and §*(p) are strictly decreasing inp. Furthermore, limy_c1¢"(p) <

c < limy_c1 G (p).

Proof. Note that the constraint (B.2) is independent of p, whereas a simple application of



the posterior monotonicity property (Proposition 4 in Smith et al. (2021)) implies that for
fixed ¢,q,Ep(q | ¢ € [g,q)) is strictly increasing in p. Thus, to keep E,(q | ¢ € [¢,q)) fixed,
we must lower both ¢ and . The final part of the corollary follows by noting that V'(q) is
strictly increasing and convex for ¢ > ¢ and strictly positive at ¢, and thus for all p € [c, 1]
the line segment intersecting the three points (¢*(p),0), (¢, Vi(c)), (7*(p) and Vi (g*(p))) can
only exist if ¢*(p) # ¢*(p), while the constraint that E,(¢ | ¢ € [¢*(p), 7" (p))) = ¢ further

implies that ¢*(p) < ¢ < *(p). O

Finally, notice that the persuasion outcome — which did not assume information to be

verifiable — can be implemented via commitment to the verifiable disclosure rule

1 if p® > q*(p)

dx) =0 if p*elg*(p),qd*(p))

1L if p* < ¢*(p).

This is due to the simple structure of optimal persuasion; it is not only monotone partitional
(Dworczak and Martini, 2019), but includes only one pooling region (see Figure 2). Thus, the
pooling region can be interpreted as non-disclosure and the separating regions as disclosure,
satisfying the verifiability assumption. In this sense, the benefit of persuasion over (ex-post)
verifiable disclosure comes directly from which posteriors (signals) are credibly concealed,

rather than the communication language itself.

C BiASED FEEDBACK — CHEAP TALK

We now consider a natural variant on our baseline model, by relaxing the requirement of
hard evidence disclosure and instead permitting arbitrary message reporting (cheap talk).
Such a variant is important for several reasons. First, in many applied settings, it might not
only be feasible but strategically optimal for consumers to misreport their experiences. The

hard-evidence baseline abstracts from this possibility, thus providing a useful benchmark;



even when fake reviews are impossible, might there be scope for strategic disclosure? In
this section, we explore the extent of strategic information transmission when lying is both
feasible and costless. Second, by studying an alternative, well-established form of equilib-
rium information transmission, we make clear the features of strategic disclosure that are
invariant to the information-sharing technology available to agents.

Specifically, we endow each agent with a rich messaging space M = [0,1] x {0} that
allows not only for full separation but also for agents to send a privileged message that pools
with non-arriving consumers, so that messaging rules (previously, disclosure rules) are now
mappings d; : X x[0,1] — M.?! Again, full transparency is dominant for P2, so we focus on
P1’s messaging strategy. Let r*(m) denote P2’s equilibrium belief upon observing message

m. Then the IC constraint (4) is replaced with the condition

d(xz) € argmin Vi(r*(m) | p*). (C.1)
méesupp(d)

We focus on the case where o« = 1. Combining various insights learned through the
baseline analysis, we summize that all equilibria must admit a partitional structure. The
proof of Theorem C.1 is constructive. First, we identify a lower-bound on the degree of
experimentation possible; there exists a g,,,;,, such that Vi(c | g,,,), thus any type lower
prefers to terminate experimentation, regardless of the continuation belief . Each equilib-

rium is then determined by its associated ¢ € [g

min, €], that is the lowest type whose message

induces experimentation. See Figure 3 for a graphical illustration of this construction.

Theorem C.1. All equilibria are partitional. That is, for all r € [0, 1] induced in equilib-
rium, the set of q in which r is induced forms an interval in [0, 1]. Furthermore, there must

be at most finitely many such intervals on [c,1].

Proof. We proceed with a series of lemmas.

21We focus on pure-strategy equilibria for simplicity, noting the usual implementation via uniform ran-
domization in cheap-talk games



Lemma C.1. All equilibria are partitional. Furthermore, there must be at most countably

infinitely many such intervals on [c, 1].

Proof. Lemma 1 tells us that r — Vi(r | ¢) is maximized at r = ¢, and that g — Vi(r | q) is
strictly increasing, so that arg max,.¢(o ) Vi(r | ¢) is strictly increasing in ¢, which proves the
first claim. To prove the second one, we argue that there can be no interval in [¢, 1] on which
separation can occur. Suppose there were, and take the lowest such interval [q1, ¢2], ¢1 < go.
If g2 < 1, then we claim that types g € (g2 + €] have an incentive to pool with ¢o. For since
this was the lowest separating interval, it must be that types ¢ € (g2 + €] induce a belief
¢=q2+0,0 >0. By Lemma A.1, Vi(¢2 | 2 +¢) < Vi(g2 | 2 +¢) = Vi(q2 | q2) +€V{(q2 | q2)
for small enough € > 0. If go = 1, then we claim that ¢ € (¢1 — €] have an incentive to pool

with ¢; by analogous reasoning. O

Lemma C.2. There exists q,,;, < c¢ such that full revelation is weakly dominant for all

types q € [O7gm7,n)

Proof. g, is the unique root of ¢ — Vi(c | q) on [0, ¢], which is well-defined since the map

is continuous, strictly increasing with Vi(c|0) <0 < Vi(c| ¢). O

It is thus without loss to associate an equilibrium with a lowest type g > 0 that forms
part of a pooling interval that itself induces experimentation. More specifically, combining
with Lemma C.1, an equilibrium can be described by a (possibly infinite) sequence (¢ =
go < ¢1 < g2 < ... such that types in [g;,¢;+1) pool and § = E(q | ¢ € [g,q1)) > ¢. More
generally, we denote ¢;+1 = E(q | ¢ € [¢, ¢i+1))-

We next prove that the two first intervals [g, ¢1), [¢1, ¢2) cannot be “too small” as types

just below ¢ would then profitably deviate by pooling with [g1, ¢2) to induce §;.

Lemma C.3. For all ¢ € | c| there exists Gamin > ¢ such that in any equilibrium,

9min>

42 = G2,min-

10



Proof. If not, then for any € > 0 there exists an equilibrium with ¢ < ¢+ ¢. But since
by definition g > ¢, it must be that ¢ > g,,;,, for sufficiently small €, and by the sandwich

theorem, V1(g | ¢) > 0, violating the IC constraint at g. O

Lemma C.4. All equilibrium partitions essentially admit at most finitely many intervals

covering [c, 1].
Proof. We proceed constructively, via the following algorithm:
1. Fix a ¢ > g,i,- Compute Gmaz = Ep(q | g € [g, 1]).

(a) If Vi(gmaz | @) > 0, then N*(¢) = 0 and g cannot be implemented in equilibrium.

(b) If not, then there exists a unique ¢; > ¢such that V1(¢; | ¢) = 0, where 1 =E(q | ¢ €
[g,q1]). (Such a value exists by continuity and strict monotonicity of r — Vi(r | q)
on [g,1], the Intermediate Value Theorem and because Vi(c | ¢) > Vi(c | ¢in) =0

by Lemma C.2).
2. Compute Vi(G1 | q1)-

(a) fVi(1]q1) = Vi(d1 | 1), then N*(¢g) = 1.
(b) If not, then there exists a unique g2 > g1 such that Vi(¢2 | ¢1) = Vi(41 | ¢1), where
G2 is analogously defined, and ¢o exists by the same reasoning as ¢.

3. Repeat from step 2.

Finally, we argue that this algorithm terminates in finitely many steps. Suppose not.
Then for all € > 0, there exists an equilibrium and an interval [g;,¢;+1) C [c, 1] such that
gi+1 — ¢ < €. Without loss, assume equality, and further assume that [¢;, ¢;11) is the lowest
such interval (this is possible due to Lemma C.3). Let ¢i+1 = E(q¢ | ¢ € [¢i,¢i+1)). Then

there exists d(g) < € such that ¢;+1 — ¢; = 6(¢). The Mean Value Theorem implies that

Vi(Ggi |l @) —Valai | @) = Vi(e1 | @)(d — ai),
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Figure 3: Cheap-Talk Equilibria: Construction

Wi(- | gs)

G191 Go G2 3

Pool Pool Pool
q

An equilibrium with three pooling intervals covering [c,1]. Relaxed value function Wi(r | ¢). For r > ¢,
Wi(- | q) = V(- | q) (solid black lines). For r < ¢, Vi(- | ¢) = 0.

for some ¢; € (g, q;). But since r — Vi(r | ¢) has a global maximum at ¢, we know that
Vi(gi +6(e) | 4:) = Vilai | @) ~ 7 5 (ai | )3(e)”.

Combining these terms implies that ¢; — ¢; = kd(e), for some k > 0, and so ¢i+1 — ¢; =
(Giv1 — @) + (¢ — @) = Kio(g), for some k; > 0. Now, since ¢ > 0, there exists a finite
I > 0 such that ¢;—; < g (if not, then Lemma C.3 is violated) and thus a simple inductive
argument implies that §; — § = k;—1d(¢), for some k;_; > 0. Taking ¢ (and thus i(e) < )

sufficiently small violates Lemma C.3. O

O]
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