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Abstract

We study a sequential experimentation model with endogenous feedback. Agents
choose between a safe and risky action, the latter generating stochastic rewards. When
making this choice, each agent is selfishly motivated (myopic). However, agents can dis-
close their experiences to a public record, and when doing so are pro-socially motivated
(forward-looking). When prior uncertainty is large, disclosure is both polarized (only
extreme signals are disclosed) and positively biased (no feedback is bad news). When
prior uncertainty is small, a novel form of unraveling occurs and disclosure is complete.
Subsidizing disclosure costs can perversely lead to less disclosure but more experimen-
tation.
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1 Introduction

In many settings, agents face a choice between safe and risky actions, with different individ-

uals facing these choices in sequence. Agents might benefit from the information generated

by those who preceded them. For instance, consider consumers choosing whether or not to

dine at a restaurant with unknown quality, or to watch a new movie. Those who do so can
∗We thank Aislinn Bohren, Gabriel Carroll, Navin Kartik, Alex Wolitzky and various seminar participants

for useful suggestions. Vellodi acknowledges funding from the EUR grant ANR-17-EURE-0001, as well as
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then leave feedback, helping later-arriving consumers make more informed choices. Similar

settings include the adoption of new products and technologies, employment choices, and

sequential voting.

A well-known dynamic externality emerges in such settings, namely that agents do not

internalize the benefit to future consumers of taking the risky action, leaving feedback and

thereby generating socially valuable information.

To remedy this inefficient under-exploration, a planner would direct agents to take the

risky action even when it is unprofitable to them provided the informational gain to future

agents more than compensates; oftentimes, direct incentives are either absent or forbidden.1

This question has been studied extensively in economics and computer science under the

label of “incentivized exploration (IE)” (Kremer et al., 2014; Che and Hörner, 2018), itself

part of the broader literatures on social learning and sequential experimentation (Banerjee,

1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000; Smith et al., 2021).2 Papers in

the IE literature largely take a normative approach to the problem. Namely, they assume

the presence of a benevolent designer who can control the provision of incentives either

via dynamic information provision or through direct recommendations. Furthermore, these

works largely assume that, once generated, individual signals are perfectly observed by the

planner or designer in charge of public information provision.

Such studies are thus silent on a particularly salient issue within the online feedback

setting — why and when do people leave feedback in the first place? For instance, when

leaving feedback regarding their dining experience, consumers might be driven by a desire

to help future consumers make informed choices, or alternatively to reward or punish the

restaurant for a positive or negative experience. Conversely, while the availability of feed-

back is often highly valued by consumers, the vast majority fail to provide it.3 And those

that do provide feedback generate well-known biases such as positive selection (Nosko and
1For instance, the US Consumer Review Fairness Act forbids eliciting reviews for payment. See https:

//tinyurl.com/5v3mt846.
2See Slivkins (2022) and Bikhchandani et al. (2022) for recent surveys on IE and social learning more

generally.
3Recent surveys report that only around 10% of consumers regularly leave reviews. See https://tinyurl.

com/mrrsf9v5, https://tinyurl.com/ux3zyuem.
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Tadelis, 2015; Hui et al., 2024) — undisclosed experiences are on average negative — and

polarization (Schoenmueller et al., 2020; Marinescu et al., 2021) — extreme reviews are more

prevalent than average reviews. Understanding the costs and benefits of leaving feedback

is crucial, both to better understand observed patterns of behavior and for designing policy

interventions that could improve market efficiency.

We take a step towards addressing these questions by providing a positive theory of IE.

Namely, we propose a simple model of sequential experimentation, in which we endow our

agents with pro-social motives to leave feedback. In our model, agents arrive sequentially

over three periods, and have the choice between a safe (S) and risky action (R). Action S

generates a deterministic reward, whereas R yields a random reward (which we sometimes

refer to as a signal) correlated to an underlying hidden state, for instance, the unknown

quality of a product. If an agent plays R, they can disclose their signal. Our main analysis

models disclosure via hard evidence with noisy transmission (Dye, 1985a); an agent is able to

leave feedback with probability α ∈ [0, 1], but can either truthfully report their signal or not

report it at all. Two crucial assumptions determine an agent’s payoff. First, when choosing

their action, we assume that they are fully self-interested, maximizing only their personal

reward. Second, when making their subsequent disclosure choice, we assume agents are fully

pro-social. Formally, they have lexicographic preferences over making optimal consumption

decisions for themselves, and then transmitting useful information to help others do the

same.

This simple combination of ingredients delivers a rich theory of selective disclosure, which

both accords with well-documented phenomena and provides new testable predictions. In

particular, our first main result (Theorem 1) demonstrates that equilibrium disclosure is

both positively selected and polarized. The intuition is simple. When player 1 (P1) plays

R, their disclosure choice is governed equally by the subsequent payoffs of P2 and P3. This

is not the case for P2, who values their own payoff far more. Thus, P1 may be inclined to

strategically disclose or conceal their experience, in order to induce P2 to take an action

unfavorable to themselves but beneficial to P3. This is the case when an informed P2 would
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fail to experiment, even though the loss to themselves is smaller than the gain to P3 that

the information generated by doing so would provide. It is precisely such experiences that

P1 strategically conceals, inducing P2 to experiment against their interests for the sake of

P3. In this case, we say P1 induces P2 to experiment. Simply put, an early adopter would

rather not take responsibility for causing the untimely demise of a new product, if there is

a reasonable chance the product is in fact worth a second chance, and in this case they keep

quiet. On the other hand, when experiences are sufficiently negative, P1 is convinced that

no further experimentation should occur and thus terminates it by posting their feedback,

while for (even marginally) positive experiences, there is no downside to disclosure. Thus,

strategic non-disclosure is used exclusively by P1 to foster efficient experimentation by P2.

Of course, models that assume that leaving feedback is costly and done only when sufficiently

informative also generate polarized feedback, but struggle to also deliver positive selection

from a single behavioral foundation.4

Beyond these, our model delivers further predictions. For instance, we fully character-

ize how equilibrium non-disclosure, and thus experimentation, varies with the prior belief

regarding risky payoffs (Theorem 2). We view this exercise as capturing, in a reduced-

form manner, how disclosure varies with how old or well-established the product market in

question is. We show that the extent of experimentation is hump-shaped in the prior. More-

oever, experimentation completely fails to occur in equilibrium for a range of sufficiently

high prior beliefs. The result relies on incentives that are distinct from the standard unrav-

eling mechanism (Milgrom, 1981; Grossman, 1981; Dye, 1985a). In particular, the classic

result does not depend on the prior distribution, whereas it does in our analysis. The key

distinction is that in our setting, the sender’s preferences over induced posterior beliefs

are type-dependent, whereas in the classic setting, each type strictly prefers to induce the

highest possible posterior. This type-dependence stems from the misaligned preferences at

the heart of the model: for an intermediate range of signals, P1 strictly prefers to induce

P2 to hold the lowest belief at which P2 still plays R and thus experiments, as described
4For instance, Hui et al. (2024) allow feedback to be positively biased for unmodelled reasons, suggesting

reasons such as fear of retaliation or a simple aversion to providing negative criticism.
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above. Outside of this range, P1 strictly prefers to have P2 share their belief. By this

token, this failure of experimentation is hence critically linked to the ex-post optimality of

disclosure; we show that it fails to hold when agents can commit to a disclosure policy prior

to receiving their signal (Kamenica and Gentzkow, 2011).

Finally, we show that the extent of experimentation is also hump-shaped in α, the

feedback opportunity parameter. This insight has important implications for real-world

interventions; practitioners argue that the lack of feedback in online markets leads to biased

inference, and that making feedback less costly (e.g. by providing explicitly monetary

incentives) would thus lead to more information and thus experimentation (Marinescu et

al., 2021). If we take the natural interpretation that α corresponds to the fraction of agents

for whom feedback is costless and 1−α the fraction for whom it is prohibitively costly, our

result suggests that making feedback less costly could perversely lead to less disclosure, and

more generally that the effectiveness of such interventions in stimulating feedback rates will

vary by products and markets.

The joint assumption of selfish consumption and pro-social disclosure is appealing on

three separate fronts. First, from a positive perspective, surveys suggest that the welfare

of future consumers is a key driver when leaving feedback, as is rewarding or punishing

sellers for good versus bad experiences.5 (Our analysis is flexible and can accommodate

both of these motivations.) At the same time, empirical evidence suggests that incentives

to provide feedback are divorced from actual consumption choices in online settings (Cabral

and Li, 2015). We present a first attempt at formalizing these arguments, with a view to

understanding both their theoretical foundations as well as their ability to organize empirical

findings.

Second, endowing agents with benevolent preferences in this manner allows our theory to

be viewed as a minimal departure from the normative analyses in the IE literature. That is,

our agents are effectively mini-planners when disclosing, facing the same trade-off between

exploration (long-run information gains) and exploitation (short-run consumption gains) as
5For example, see https://tinyurl.com/mrybw969.
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in previous work, but they also face additional constraints imposed on them in equilibrium,

such as ex-post optimality of disclosure rules. Our results thus demonstrate how such

constraints shape the degree to which disclosure can be used to incentivize exploration.

Third, the informational externality described above derives fundamentally from the

structure of intertemporal preferences, namely that agents are “present-biased” when mak-

ing their consumption choices. This gives rise to an alternative, psychological interpretation

of the model. Instead of a sequence of agents, consider a single decision maker with the

following dynamically inconsistent preferences. When taking actions that affect current pay-

offs, they are myopic (completely present biased), whereas when deciding what available

information to store in memory to inform future choices, they are patient. This corresponds

to a limiting case of quasi-hyperbolic, or βδ (Laibson, 1997), preferences wherein β is arbi-

trarily small. By modeling the disclosure objective as altruistic, our framework permits this

application to an individual who selectively encodes their experiences in order to become

less “conservative” — that is, more open to trying and learning from new experiences. Our

work thus demonstrates a close conceptual connection between IE and motivated reasoning

(Bénabou and Tirole, 2002, 2004; Carrillo and Mariotti, 2000).

To identify how ex-post constraints shape disclosure, we also analyze the case where P1

can commit to a signaling rule. (We also study cheap-talk in our Online Appendix.) We

find that communication is again polarized and positively selected, but regardless of the

starting prior (Proposition 3). This result is in contrast to Theorem 2. In concurrent and

independent work, Smirnov and Starkov (2024) analyze a very similar model, focusing on the

persuasion benchmark as well as cheap talk. They also study a three-period model but also

have some partial results for the infinite horizon case. We focus on disclosure, as our interest

is in understanding how and why consumers might choose not to disclose their experiences.

By doing so, we also uncover tight comparative-statics implications on the nature and degree

of equilibrium communication; our results regarding non-monotone disclosure (Theorem 2

and Corollary 1) have no analog under alternative forms of information transmission.

The paper proceeds as follows. After introducing the model (Section 2), we perform a
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belief-based analysis of optimal disclosure, abstracting from the details of the communica-

tion technology. Armed with these insights, we fully characterize equilibrium disclosure in

Section 4, and contrast it to the persuasion (commitment) benchmark in Section 5. We

discuss our modeling choices as well as other extensions in Section 6, and conclude with

thoughts on future research in Section 7. Unless otherwise mentioned, proofs are gathered

in the Appendix.

2 Model

Players and signals – At each date t = 1, 2, 3, a short-lived agent arrives and takes a

binary decision at ∈ {0, 1}, corresponding to safe and risky actions respectively. The safe

action generates a payoff 0. The risky action incurs a cost c ∈ (0, 1) and generates a payoff

x ∼ Fθ supported on [0, 1] that depends on a hidden state θ ∈ {0, 1}. We shall often refer to

at = 1 as “consuming”. Conditional on receiving outcome x, the agent may then have the

opportunity to provide feedback regarding their experience via direct communication. As

we will vary the precise form of communication available, we defer providing further details.

We make the following standard assumptions on Fθ (Smith et al., 2021):

Assumption 1. (1.a) FL, FH are differentiable and mutually absolutely continuous with

common, convex support X = [0, 1] and densities fH , fL satisfying the monotone

likelihood ratio property (MLRP).

(1.b) infx

(
fL
fH

)
= 0, supx

(
fL
fH

)
= ∞.

(1.c) E(x | θ = H) = 1 and E(x | θ = L) = 0.

Assumption (1.a) states that higher signals are more likely in the high state, and that no

perfectly revealing signal exists in either state. Assumption (1.b) is the “unbounded beliefs”

assumption of Smith and Sørensen (2000), stating that there always exists a signal strong

enough to almost completely overturn any prior belief. Assumption (1.c) is a normalization

ensuring that beliefs and expected payoffs coincide, i.e. E(x | p) = p, and is made simply for
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algebraic convenience. As in Smith et al. (2021), we further assume that the distributions

of the log-likelihood ratio of signals are log-concave. This ensures an intuitive feature of

belief updating known as “posterior monotonicity” (PM) holds under Bayesian updating.

Assumption 2. Let ϕθ(l) denote the state-contingent densities for the transformed variable

l = log(x/(1− x)). Then ϕθ(·) is log-concave for θ ∈ {0, 1}.

Let px denote the posterior belief formed by combining the belief p with the outcome

x ∈ [0, 1]. That is,

px ≡ pfH(x)

fp(x)
≡ pfH(x)

pfH(x) + (1− p)fL(x)
for x ∈ X. (1)

Note that for all p ∈ (0, 1), px = p if and only if fH(x) = fL(x). Let x̂ denote the

“neutral” signal that satisfies this equality, and more generally, let x(p, q) solve px(p,q) = q,

i.e. it is the signal required to achieve posterior q starting from prior p. Both x̂ and x(p, q)

are guaranteed to exist and be unique for all p, q ∈ (0, 1) by Assumption 1.

We will sometimes use a natural transformation from signal space X into belief space

[0, 1]. Namely, we denote by G the distribution over posterior beliefs induced by the signal

distribution: for each p, q ∈ [0, 1], let Gp(q) ≡ Fp(x(p, q)). By the absolute continuity

assumption (1.b), Gp is continuously differentiable and admits a density gp.

Payoffs – Each agent values the payoffs to both themselves and future agents, but very

differently. We assume a form of lexicographic preferences, in which players care infinitely

more about their own consumption than that of any other consumer.6 On the other hand,

once their consumption choice has been made, they value the welfare of future consumers

equally. Formally, given a prior belief pt, agent t chooses at to maximize their expected

consumption payoff at(pt − c), so that at(pt) = Ipt≥c, whereas given at = 1 and the signal x

thereby obtained, they provide feedback to maximize

Vt(p
x
t | pt) ≡ E

[
3∑

s=t+1

as(θ − c) | pt, x

]
= E

[
3∑

s=t+1

Ips≥c(θ − c) | pt, x

]
.

6We discuss this assumption in Section 6.
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3 The Value of Communication

Before beginning our analysis of equilibrium disclosure, we provide an initial, belief-based

approach. Since we focus on ex-post disclosure without commitment, we will need to account

for divergent private and public beliefs on the equilibrium path of play. Let u(r | q) ≡

Ir⩾c(q − c) be the utility, as judged by an agent with private belief q, that a successor with

belief r will derive from their own consumption decision. Next, let Vt(r | q) denote the

present value to player t if they hold private belief q, and the public continuation belief in

period t+ 1 is r.

We will restrict our attention throughout the paper to equilibria in which P2 fully reveals.

This is natural for several reasons. First, it is immediate that truthful revelation is weakly

dominant for P2. To see this, note that V2(r | q) = u(r | q) = Ir≥c(q − c) is constant

over r ≥ q, and maximized at r = q. Second, we will show in Online Appendix A that

truthful revelation by P2 is strictly dominant in the presence of (possibly arbitrarily small)

shocks to players’ payoffs, and is thus uniquely selected by an argument of robustness to

such perturbations.

With this restriction in mind, we can write the value function for P1 in the following

succinct form:

V1(r | q) =


u(r | q) + αΛ(r | q) + (1− α)u(r | q) if r ⩾ c

0 if r < c,

(2)

where

Λ(r | q) ≡ E [u(rz | qz)] =
∫ 1

x(r,c)
(qz − c) fq(z) dz

denotes the expected consumption value of P3 from P1’s perspective, given that P1 holds

private belief q and that P2 both holds belief r and consumes. Basic algebra confirms that:

Λ(r | q) = q(1− FH(x(r, c)))(1− c) + (1− q)(1− FL(x(r, c)))(−c). (3)
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When P1 holds belief q and P2 belief r, P1 believes the state is high with probability q and

that P3 will consume with probability 1−FH(x(r, c)), receiving a payoff 1−c, and similarly

when the state is low.

3.1 Experimentation Versus Accuracy

The function Λ(· | ·) is crucial in determining P1’s preferences for strategic disclosure. The

following lemma therefore provides a complete characterization of its key properties.

Lemma 1. 1. r 7→ Λ(r | q) is strictly increasing on [0, q) and strictly decreasing on (q, 1].

2. q 7→ Λ(r | q) is strictly increasing (and in particular affine) for all r ⩾ c.

3. Λ(c | c) > 0.

Most importantly, r 7→ Λ(r | q) is single-peaked at q. Thus, Λ measures the loss (from

P1’s perspective) from inducing an incorrect belief on P2 — it increases the likelihood that

P3 consumes when they shouldn’t, or doesn’t consume when they should. That q 7→ Λ(r | q)

is increasing simply reflects that, for any given profile of consumption choices, P1 is better

off holding a higher belief. Finally, that Λ(c | c) > 0 quantifies the option value from

consumption; note that u(c | c) = 0, so while the immediate return from P2 consuming at

belief c is 0, the gain to P3 from such consumption is strictly positive, as there is a chance

P2 receives a positive outcome, acquiring useful information and thus providing an expected

gain to P3. Since Λ(c | c) > 0, by continuity Λ(c | q) > 0 for q in some neighborhood below

c. However, since inducing a belief r < c leads to non-consumption, P1 would rather suffer

the loss in accuracy than terminate consumption when their belief is just below q.

We can leverage this structure to characterize V1. To do so, it is often convenient to

study the “relaxed” value function

W1(r | q) ≡ q − c+ αΛ(r | q) + (1− α)(q − c), (4)

which denotes P1’s value given a continuation belief r and private belief q, assuming that
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P2 consumes and P3 consumes if they do not see a signal. That is, V1(r | q) = Ir≥cW1(r | q).

From equation (4), it is straightforward to demonstrate that W1 obtains the same properties

as Λ, since u also preserves these properties.

Lemma 2. 1. r 7→W1(r | q) is strictly increasing on [c, q) and strictly decreasing on (q, 1].

2. q 7→W1(r | q) is strictly increasing (and affine) on [0, 1].

3. W1(c | c) > 0.

Lemma 2 provides a comprehensive characterization of P1’s preferences over which be-

liefs to induce, conditional upon receiving a given signal. In particular, it uncovers when

the trade-off between fostering experimentation and minimizing consumption errors is ac-

tive and, when so, how it is resolved. First, if q ≥ c, then the trade-off is inactive and

P1 prefers to truthfully reveal; experimentation is guaranteed and consumption errors are

minimized by doing so. Second, if q < c and P1 wants to foster experimentation then

they would prefer to do so by inducing a belief c, as this is the closest belief to theirs that

induces experimentation, thus minimizing consumption errors. Third, if P1 finds it optimal

to foster experimentation when q < c, then they find it optimal to do so at all q′ ∈ [q, c).

Intuitively, the closer is P1’s posterior to c from below, the greater is the option value in

having P2 experiment.

4 Missing Feedback – Hard Evidence Disclosure

The results in Section 3.1 provide merely a guide to P1’s preferences. We now proceed

to analyze optimal disclosure rules to uncover the extent to which the ex-post constraints

imposed by strategic information transmission limit the degree to which these preferences

can be respected. We adopt hard evidence (verifiable) disclosure (Dye, 1985a; Jung and

Kwon, 1988), wherein P1: (i) with probability α, is able to freely disclose their signal x, and

chooses whether or not to do so; (ii) with probability 1−α, has no such opportunity, due for
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instance to a prohibitively high disclosure cost.7 In this context, and since P2 is assumed to

fully disclose (see Section 3) the disclosure rule is a function d : X × [0, 1] → {0, 1}, where

d(x, p) = 1 denotes disclosure of signal x at prior p. Note that we keep the dependence on

the prior for ease of notation, given the comparative statics exercise we perform in Section

4.3.

Since disclosure is verifiable, the following statements are immediate. First, if a signal

is disclosed, it is simply combined with the current belief according to Bayes’ rule (1).

Second, if a realized signal x is not disclosed, then the update rule must account for all

other signals at which non-disclosure also occurs, as well as the possibility that disclosure

was not feasible. For disclosure rule d, let D(p, d) = {x ∈ X | d(x, p) = 1}, D(p) ≡ D(p, d),

and N(p) ≡ D(p, d)c.8 We have:

p∅ ≡ P(d = ∅ | θ = θH)

P(d = ∅)
=

(1− α)p+ α
∫
N(p) p

xfp(x)dx

(1− α) + α
∫
N(p) fp(x)dx

. (5)

The relevant incentive compatibility (IC) constraint for the disclosure choice by P1 is

then: for all x ∈ X, d(x, p) = 1 if and only if

V1(p
x | px) ⩾ V1(p

∅ | px). (6)

An equilibrium is simply a disclosure rule d for P1 such that: 1) given the non-disclosure

belief p∅, d is incentive compatible, and 2) given d, p∅ is correctly computed:

Definition 1. An equilibrium is a disclosure rule d such that (5) and (6) are satisfied.

4.1 Full Disclosure

We begin with a trivial but important observation, namely that when (α = 1), the only

equilibrium outcome is full revelation.9 The logic is as follows. First, we show that for any
7In a slight variant of the model, the arrival of agents is random, occurring with probability α in each

period.
8For any p < c, P1 abstains from consuming (a1 = 0) and thus has no signal to report, making D(p)

irrelevant. In what follows we will therefore focus on values p ≥ c.
9Note that were α < 1 but reviewing opportunities observable, the result would also apply.
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α ∈ (0, 1], if a signal x is acquired with px ≥ c, then it is disclosed. Intuitively, such types

have a preference for truthful disclosure since they face no tradeoff between accuracy and

experimentation, as explained following Lemma 2, and thus the hard-evidence constraint

leads to a simple unraveling argument. Equation (5) then tells us that it is impossible to

foster experimentation via strategic non-disclosure, as non-disclosure will necessarily induce

a belief below c.10

Lemma 3. (Positive Selection) If px ⩾ c, then d(x, p) = 1 is a strictly dominant strategy.

Corollary 1. If α = 1, then all equilibria are outcome-equivalent to full disclosure.

4.2 Positively Biased and Polarized Disclosure

Having seen that when disclosure is always feasible this leads to unraveling, we turn to

the more realistic setting in which reviewing opportunities are random. We focus on a

particular equilibrium, namely the maximal experimentation equilibrium (MEE). To justify

this choice, we introduce various relevant concepts, the first of which is the experimentation

region of an equilibrium d, denoted by XE(d):

Definition 2. For an equilibrium d, let

XE(d) = {x ∈ X | x ∈ N(p) and a2(p
∅) > a2(p

x)}.

A signal x ∈ XE(d) if under equilibrium d, player 1 chooses not to disclose it, and by so

doing induces player 2 to consume with strictly higher probability.11

Definition 3. An equilibrium d is an experimentation equilibrium (EE) if XE(d) has strictly

positive (Lebesgue) measure. Let E denote the set of all such equilibria. An equilibrium d is

a maximal experimentation equilibrium (MEE) if d ∈ E and d′ ∈ E implies XE(d
′) ⊂ XE(d

′).
10Of course, indifference allows for non-disclosure, but this would lead to identical outcomes.
11In the current baseline setting, this last point amounts to player 2 consuming at p∅ but not at px. In

Section A of the Online Appendix, we study an extension with idiosyncratic preference shocks that will
make both probabilities interior.
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Thus, a MEE contains the largest experimentation region out of all equilibria. The first

main result we now establish is that when P1’s prior is intermediate, any MEE exhibits both

polarity bias (only sufficiently low and sufficiently high signals are disclosed) and positively

selected disclosure (non-disclosure is bad news). We next formalize these notions:

Definition 4. A disclosure rule d is:

1. Polarizedif there exist ε, ε > 0 such that d(p, x) = 1 for all x ∈ [0, ε)∪ [1− ε, 1] and N(p)

has strictly positive measure.

2. Positively selected at p if

E(pz | z ∈ N(p)) ≡

∫
N(p) p

z dFp(z)∫
N(p) dFp(z)

⩽ p. (7)

Lemma 3 tells us that disclosure occurs in equilibrium for all signals such that px ≥ c,

i.e. for sufficiently high signals. on the other hand, Lemma 2 tells us that if non-disclosure

occurs, it will do so on a single interval. Finally, it is easily shown that for sufficiently low

x, P1 strictly prefers to disclose. Intuitively, after such a bad experience, P1 holds little

hope that the product is good and thus prefers to cease experimentation immediately. This

logic gives rise to our first main result:

Theorem 1. (Interval non-disclosure) In any EE, player 1 adopts the disclosure strategy:

d(x, p) =


1 if px ⩾ c

0 if px ∈ [q(p), c)

1 if px < q(p),

for some q(p) ∈ (0, c].

In equilibrium, P1 discloses only those signals that lie on either side of the interval

[x(p, q(p)), x(p, c)], thus exhibiting both polarity and positive selection (since x(p, c) ≤

x(p, p) = x̂). P1 thus thinks along the following lines. If they are sufficiently confident
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Figure 1: Equilibrium Non-Disclosure as prior p varies.

p

q

c

1

p̃ p̄ p̂c

qc(p)
qv(p)

Non-disclosure in the MEE, as the prior p varies. Dark-shaded region: non-disclosed posterior beliefs;
light-shaded region: disclosed posterior beliefs; hatched region: full disclosure. Long-dashed line: incentive
constraint, qv(p); short-dashed line: belief constraint, qc(p).

regarding the product’s quality, they should let others know. But if they are not, they

would rather not take the risk of ceasing further experimentation prematurely and thus

should keep their opinions to themselves.

4.3 U-shaped Disclosure with respect to prior

Theorem 1 tells us that non-disclosure occurs on an interior interval of signals. But how does

this interval depend on primitives, such as P1’s prior belief p, and the disclosure parameter

α? In this section, we show how the equilibrium disclosure threshold q varies with the

prior belief p. One can view this exercise as comparing across products that differ in how

well-established they are. For instance, if p is close to 1 then the product is well-established,

while for p close to c, the product is close to exit. For p in the interior of this region,

products can be viewed as novel. The following result, illustrated in Figure 2, summarizes

these findings and constitutes our second main result:

Theorem 2. There exist unique thresholds p̃, p̄ ∈ (c, 1) and functions p 7→ qc(p), qv(p) on

[c, 1], with p 7→ qc(p) strictly decreasing and p 7→ qv(p) strictly increasing on [c, p̄], such that:
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1. If p ∈ [c, p̃] then setting q(p) = qc(p) constitutes a MEE.

2. If p ∈ [p̃, p̄], then setting q(p) = qv(p) constitutes a MEE.

3. If p ∈ (p̄, 1], no EE exists and all equilibria are outcome-equivalent to full disclosure.

As will become clear through the subsequent analysis, the functions p 7→ qc(p), qv(p)

represent two important constraints on strategic non-disclosure. The first, qc(p), is a “belief

constraint”, and arises due to the classic form of unraveling; Lemma 3 shows that d(p, x) = 1,

occurs for all posterior beliefs px > c. Non-disclosure by P1 is thus positively selected, and

so in order to induce experimentation by P2, P1 cannot conceal signals that are too negative

–or else the resultant posterior p∅ would drop below c. This constraint tightens as p gets

closer to c; the close is p to c, the less room there is for negatively selected non-disclosure

to keep p∅ > c and thus induce experimentation.

The second, qv(p), is an “incentive constraint”; it tracks the marginal posterior for P1

at which they are indifferent between disclosing and not, assuming posteriors in [qv(p), c)

are concealed in equilibrium. That qv(p) is increasing constitutes yet another expression of

the experimentation-accuracy trade-off; in particular, when p is close to 1, the continuation

belief r is also close to 1, regardless of P1’s disclosure strategy. As such, non-disclosure plays

no role in altering P2’s experimentation incentives, and in fact would only induce P3, being

less well-informed, to make more mistakes in their consumption choice. Thus, despite there

being a range of beliefs q just below c at which P1 would prefer to induce experimentation,

they would suffer too great a loss through increased consumption errors by P3 to warrant

doing so.

To establish Theorem 2, we will use a series of lemmas characterizing beliefs following

non-disclosure and the functions qc(p), qv(p). Let ϕ(p, q) denote the continuation public

belief if signals in the range [x(p, q), x(p, c)) are not disclosed:

(q ⩽ c) : ϕ(p, q) =
(1− α)p+ α

∫ x(p,c)
x(p,q) p

zdFp(z)

(1− α) + α
∫ x(p,c)
x(p,q) dFp(z)

, (q > c) : ϕ(p, q) = p. (8)
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We showed in Theorem 1 that, if non-disclosure happens, it is over an interval of exactly this

type, so ϕ(p, q) is indeed the relevant computation for the equilibrium belief p∅ following

non-disclosure.

Lemma 4. 1. For p ⩾ c, q 7→ ϕ(p, q) is strictly increasing and differentiable on [0, c], with

ϕ(p, 0) ∈ (0, p) and ϕ(p, c) = p.

2. For q ≤ c, p 7→ ϕ(p, q) is strictly increasing on [c, 1].

Intuitively, Lemma 4 part i) tell us that, fixing a prior p, if the lowest marginal concealed

signal increases, so too will the average concealed belief (since the upper marginal belief

is fixed at x(p, c)), and thus so will the continuation belief. The proof of part ii) relies

on the “posterior monotonicity” property that Smith et al. (2021) show is equivalent to

Assumption 2. Intuitively, fixing the interval non-disclosure rule, increasing P1’s prior leads

to P2 holding a higher belief, conditional on non-disclosure.

The Belief Constraint – We can now use Lemma 4 to draw out a key constraint

bearing on strategic non-disclosure: as P1’s prior declines toward c, the maximal interval

of signals they could conceal and still induce experimentation shrinks. Indeed, when P1 is

more pessimistic to begin with, P2 is more easily dissuaded from consuming. To formalize

this intuition let, for p ⩾ c,

qc(p) = inf {q ∈ [0, 1] | ϕ(p, q) ⩾ c} . (9)

Lemma 4 and Corollary 4 tell us that p 7→ qc(p) is well-defined on [c, 1]. We now establish

key properties of the function qc(p), illustrated by the dashed line in Figure 2:

Lemma 5. The map p 7→ qc(p) is everywhere continuous, with qc(c) = c. Furthermore,

there exists p̂c ∈ (c, 1) such that: (i) on [c, p̂c], qc(p) is strictly decreasing, differentiable and

solves ϕ(p, qc(p)) = c; (ii) on [p̂c, 1] qc(p) = 0 .

The Incentive Constraint — Having characterized the “belief constraint” qc(p) bear-

ing on P1’s disclosure rule, we next turn to the second key constraint involved: an “incentive

17



constraint” qv(p) that identifies the marginal signal at which P1 is indifferent between dis-

closing or not, assuming that experiences between that level and x(p, c) are also concealed

(Theorem 1 demonstrated that this is necessarily the form of non-disclosure in an EE).

To begin, we demonstrate that disclosure is strictly optimal after sufficiently extreme

signal realizations. We do so by proving a property of the relaxed value function W1(r | q)

defined in Section 3.1.

Lemma 6. For all p ∈ [c, 1),

lim
q→0,1

[W1(ϕ(p, q) | q)− V1(q | q)] < 0.

Away from these limits, we will show that there can exist signals that render P1 indiffer-

ent between disclosing and not. This indifference condition defines the incentive constraint:

for p ⩾ c, let

q̂(p) ≡ inf {q ∈ [0, 1] |W1 (ϕ(p, q), q) = V1(q | q)} (10)

qv(p) = min{c, q̂(p)}. (11)

The minimization defining q̂(p) is well defined, as the constraint is always satisfied at q = p.

Thus, q̂(p) defines the lowest belief at which the above indifference is satisfied, while qv(p)

simply stores the value c whenever this belief is greater than c. To show that q̂(p) is strictly

increasing in p, as illustrated by the solid line in Figure 2, we first show that as p increases,

all solutions (in q) to W1 (ϕ(p, q), q) = V1(q | q) decrease (and thus so does the smallest one,

q̂(p)).

Lemma 7. The map p 7→ q̂(p) is strictly increasing, with q̂(c) < c and q̂(p) > 0 for all

p ⩾ c. Furthermore, there exists p̄ ∈ (c, 1) such that q̂(p) > c if and only if p > p̄.

Combining the proven properties of qc(·) and q̂(·) immediately shows that the two loci

cross at a unique interior point:

Lemma 8. There exists p̃ ∈ (c, 1) such that q̂(p) ⩽ qc(p) if and only if p ⩽ p̃.
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Figure 2: Equilibrium Non-Disclosure

p

q

c

c

Non-disclosure as α varies. As in Figure 1, long-dashed lines are incentive constraints, qv(p), short-dashed
line are belief constraints, qc(p). The former move up with α, while the latter move down with α. Black
arrows: direction in which constraints move as α increases.

The proof of Theorem 2 concludes by setting q(p) ≡ max{qc(p), qv(p)} for all p ≥ c.

4.4 Subsidizing Disclosure

Theorem 2 uncovers the complex relation between the degree of non-disclosure and the prior

belief p, due to the two key constraints qc(p), qv(p) working against each other. But how are

these constraints themselves determined by the ability to disclose, α? We first show that

the belief constraint qc is increasing in α, converging pointwise to qc(p) = c for all p < 1 as

α → 1; intuitively, a higher α leaves less room for strategic (non)disclosure. We then show

that the incentive constraint qv is decreasing in α, converging pointwise to qv(p) = c for all

p < 1 as α → 0. Intuitively, a higher α leads to fewer mistakes by P3 simply by virtue of

disclosure opportunities being more probable, and thus P1 is more willing to strategically

non-disclose. (See Figure 2.) As a result, for a fixed prior p, the experimentation region is

non-monotone in α, converging to the empty set when α tends to 0 or 1. (See Figure 3)

Lemma 9. 1. For fixed p ∈ (c, 1), there exists α̂(p) ∈ (0, 1) such that qc(p) is strictly

increasing in α for α ∈ [α(p̂), 1] and qc(p) = 0 otherwise. Furthermore, limα→1 qc(p) = c.
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Figure 3: Non-Disclosure as α varies

α

c− q(p)

α(p) α̃(p)0 1
0

1

Non-disclosure as α varies for fixed p.

2. For fixed p ∈ (c, 1), q̂(p) is strictly decreasing in α. Furthermore, there exists α(p) > 0

such that for all α ∈ [0, α], q̂(p) = p.

Corollary 2. For fixed p ∈ (c, 1), there exists α(p) > 0 such that for all α ∈ [α(p), 1], qv(p)

is strictly decreasing in α and for all α ∈ [0, α), qv(p) = c.

Finally, we can put these results together to demonstrate that the region of experimen-

tation [q̄, c] is non-monotone in α.

Proposition 1. Fix p ∈ (c, 1). Then there exist 0 < α(p) < α̃(p) < 1 such that c − q̂ is:

(1) equal to 0 for all α ∈ [0, α); (2) strictly increasing for all α ∈ [α, α̃(p)); (3) strictly

decreasing for all α ∈ [α̃, 1).

5 Optimal Feedback – Persuasion

We now turn to the benchmark wherein P1 can commit to an arbitrary messaging rule prior

to receiving their private signal x (Kamenica and Gentzkow, 2011). Formally, P1 chooses an

information structure, consisting of a message space S along with a collection of conditional

probabilities (π(· | x))x∈[0,1], where π(s | x) denotes the likelihood of P1 sending the message
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s given that they received signal x. Let M = [0, 1]∪{∅} denote the (rich) message space that

naturally associates messages with outcomes, as well as a privileged message ∅ that denotes

no signal reported. We may take S = M. Since communication is no longer constrained

to be verifiable, we can set α = 1 without loss of generality. Contrasting this case with

that of hard-evidence disclosure will thus shed light on how ex-post IC constraints shape

optimal feedback. Recently developed techniques in the persuasion literature allow us to

completely characterize the solution (Dworczak and Martini, 2019). Denote V1(q | q) by

V1(q) for simplicity.

Proposition 2. There exist q∗(p) < c < q̄∗(p) such that the solution to the persuasion

problem takes the following form: reveal x if either px < q∗(p) or px ⩾ q̄∗(p), and pool all

x such that px ∈ [q∗(p), q̄∗(p)). Furthermore, q∗(p), q̄∗(p) solve

Ep(q | q ∈ [q∗(p), q̄∗(p))) ≡

∫ q̄∗(p)
q∗(p) q dGp(q)∫ q̄∗(p)
q∗(p) dGp(q)

= c, (12)

and
V1(q̄

∗(p))

V1(c)
=
q̄∗(p)− q∗(p)

c− q∗(p)
. (13)

Communication under persuasion is also both polarized (pooling takes place on an inte-

rior interval) and positively selected (the average belief conditional on pooling is c, which is

less than p). However, under persuasion, posteriors above c can be non-disclosed (q̄∗(p) > c),

whereas under ex-post disclosure, unraveling above c prevents this from happening (Lemma

3). This contrast clearly highlights the role of ex-post incentives. When p is close to either

c or 1, the constraints qc(p) and qv(p) bind and completely undo P1’s ability to foster ex-

perimentation (Theorem 2). Without the ex-post IC constraints, P1 is able to non-disclose

above c, thereby relaxing these constraints and enabling P1 to credibly non-disclose and

foster experimentation. The following result, analogous to Theorem 2, formalizes this logic.

Corollary 3. Both q∗(p) and q̄∗(p) are strictly decreasing in p. Furthermore, limp→c,1q
∗(p) <

c < limp→c,1 q̄
∗(p).
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Figure 4: Persuasion Solution

q

cq∗ q̄∗
0

V1(q)

ψ(q)

Separate Pool Separate

Disclosure under commitment. Value function V1(q) ≡ V1(q | q) solid black lines. q∗, q̄∗ are determined by
both E(q | q ∈ [q∗, q̄∗)) = c and lying on a straight-line segment ψ(q) (dotted red) intersecting V1(q) at q∗, q̄∗
and c.

Finally, notice that the persuasion outcome — which did not assume information to be

verifiable – can be implemented via commitment to the verifiable disclosure rule

d(x, p) =


1 if px ⩾ q̄∗(p)

∅ if px ∈ [q∗(p), q̄∗(p))

1 if px < q∗(p).

This is due to the simple structure of optimal persuasion; it is not only monotone partitional

(Dworczak and Martini, 2019), but includes only one pooling region (see Figure 4). Thus, the

pooling region can be interpreted as non-disclosure and the separating regions as disclosure,

satisfying the verifiability assumption. In this sense, the benefit of persuasion over (ex-

post) verifiable disclosure comes directly from which posteriors (signals) are able to be

non-disclosed.
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6 Discussion

6.1 Model Discussion

Our model differs from standard social learning settings in some important ways. First,

whereas typically agents’ private signals are hidden while their consumption choices are

public (Banerjee, 1992; Bikhchandani et al., 1992), here it is the reverse, in the sense that

(some) private signals are publicly disclosed.12 Second, whereas typically agents receive a

private signal prior to making a consumption choice, here our agents can only receive their

signal if they consume. In our setting, the link between actions and private signal acquisition

is crucial; were future agents to receive (and then disclose) private signals regardless of

their action choices, current agents would never seek to distort these choices by withholding

information, and thus full revelation would be (weakly) dominant. We thus view our paper

as belonging more to the literature on experimentation.

The three-period horizon on which we focus provides the simplest, most transparent

setting in which strategic (non-)disclosure for purposes of inducing experimentation will

arise. With an infinite horizon, each agent’s disclosure choice would need to internalize not

only its impact on future experimentation decisions but also its impact on future disclosure

choices, each affecting all subsequent ones, etc. This “induced chain of strategic disclosures”

aspect renders the problem analytically intractable, and it also does not seem so empirically

relevant to natural applications such as consumer product reviews, employees rating their

firm, etc. The three-period setup, in contrast, allows for sharp and distinctive predictions

on what signals will be disclosed or hidden, and how these regions vary with prior beliefs.

In Section 4 we modeled hard-evidence disclosure through a binary choice of whether

or not to disclose the exact signal received. It is almost immediate that broadening the

feasible messages to allow agents to report any interval that contains their true signal does

not affect these results. To see this, note first that for q ≥ c, r 7→ V1(r | q) is single-peaked
12Wolitzky (2018) also studies a social learning model with unobservable actions, but without strategic

disclosure.
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at q, and thus Lemma 3 continues to hold since each type has a strict incentive to separate.

Next, note that for q < c, deviating to an off-path message results in a payoff of 0, since all

types above c fully separate and are thus uniquely identified in equilibrium.

6.2 Rewarding and Punishing Sellers

We now demonstrate yet another interpretation of our framework and results. Consider

a firm selling a product of unknown quality θ, that is free to produce. Consumers arrive

in sequence and can either purchase the product (risky action) or not (safe action), with

consumption payoffs θ − c for some c > 0 and 0 respectively.

The firm posts a take-it-or-leave-it price offer, but is constrained by limited liability, so

that it cannot set a negative price. That is, if the prevailing public belief is p, then if p ≥ c

the seller’s price is p − c and the consumer purchases, whereas if p < c, trade is infeasible

as it would violate limited liability, and so the consumer does not purchase. Now suppose

that at the point of disclosure, the first consumer’s objective is total firm profit

Πt = E

[
3∑

s=2

as(ps − c) | p, x

]
.

Notice that this is precisely the same objective as given in Section 2.

In short, limited liability prevents the firm from internalizing the full social surplus when

setting prices, and therefore the fundamental externality present in the baseline analysis

remains here: consumers with beliefs just below c do not consume, despite there being

positive social value in doing so due to informational externalities.

The same analysis remains applicable, but can now be reinterpreted in terms of con-

sumers dictating the firm’s future revenue. That is, after a positive enough experience

(q > c) they are happy to disclose, thus “rewarding” the firm with continued demand. Af-

ter a sufficiently bad experience (q < q(p)) they disclose, thereby “punishing” it with zero

future revenue. For mildly negative experiences, the consumer is not sufficiently unhappy

to kill the firm’s prospects, and thus strategically non-discloses to encourage further experi-
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mentation. Of course, one could formulate the notion of “reward and punishment” in ways

that go beyond our framework. For instance, a consumer’s desire to affect the fate of the

firm may be driven by reference-dependence — the greater is the difference |px − p|, the

more inclined they are to leave feedback, as in Hui et al. (2024) — or involve asymmetries

such as loss aversion, if they are more incensed by bad outcomes than grateful for good

ones.

7 Conclusion

We studied a model of strategic information transmission, driven by a tension between

selfish consumption and pro-social disclosure. Our analysis sheds light on an important

question: when might consumers choose not to leave feedback in order to improve overall

welfare? We showed that equilibrium disclosure is necessarily extreme and positively biased,

two well-established empirical regularities found in consumer reviewing behavior. We

further showed that disclosure is hump-shaped with respect to both agents’ prior and their

opportunities for leaving reviews. Taking the prior as a proxy for the age of the product

(a higher prior implies an older product, due to learning and ex-post selection), the first

result implies full disclosure for well-established products, while the second cautions that

making feedback less costly could potentially reduce learning. There are undoubtedly many

economic forces at play that govern consumers’ incentives to leave reviews, so we view our

results as taking an important first step toward understanding a very natural one — that

consumers might be pro-socially motivated when leaving feedback.
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A Proofs

A.1 Proof of Lemma 1

To prove the first part of the lemma, it suffices to note that ∂Λ(r|q)
∂r is proportional to qx(r,c) − c,

which has the sign of q − r, by the MLRP. The second part follows immediately from equation (3).

(∂F/∂q)(x) = (FH − FL) (x) < 0, which is implied by MLRP. The third part follows from

Λ(c | c) =
∫ 1

x̂

(cz − c) fc(z) dz > 0,

since cz > c for z > x̂.

A.2 Proof of Lemma 3

The proof proceeds in two cases. Let q = px. First, suppose that p∅ < c < q, so that non-disclosure

causes consumption to stop. Then, using (2),

V1(p
∅ | q) = 0 < u(q | q) + αΛ(q | q) + (1− α)u(q | q) = V1(q | q),

since by Lemma 1,

Λ(q | q) ≥ Λ(c | q) ≥ Λ(c | c) =
∫ 1

x̂

(cz − c) fc(z) dz > 0.

Next, suppose that p∅ ⩾ c, so that non-disclosure leads to consumption (and subsequent disclosure

by P2) in spite of a lower belief. In this case,

V1(q | q)− V1(p
∅ | q) = α

[
Λ(q | q)− Λ(p∅ | q)

]
≥ 0,

since the first part of Lemma 1 showed that that r 7→ Λ (r | q) is maximized at q, for q ⩾ c.
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A.3 Proof of Lemma 4

For part i), differentiability is clear, and ∂ϕ(p, q)/∂q has the sign of

−∂x(p, q)
∂q

px(p,q)

[
(1− α) + α

∫ x(p,c)

x(p,q)

dFp(z)

]
+
∂x(p, q)

∂y

[
(1− α)p+ α

∫ x(p,c)

x(p,q)

pzdFp(z)

]
.

Given that q 7→ x(p, q) is increasing by the MLRP and px(p,q) ≡ q, that sign is also that of

(1− α)(p− q) + α

∫ x(p,c)

x(p,q)

(pz − q) dFp(z) > 0,

since q ≤ c ≤ p and pz ≥ q for z > x(p, q).The bounds on q 7→ ϕ(p, q) follow immediately.

For part ii), let us first re-write ϕ(p, q) as

ϕ(p, q) =
(1− α)p+ α

∫ x(p,c)

x(p,q)
pz dFp(z)

(1− α) + α
∫ x(p,c)

x(p,q)
dFp(z)

=
(1− α)p+ α

∫ c

q
r dGp(r)

(1− α) + α
∫ c

q
dGp(r)

.

Let a(p) ≡
∫ c

q
r dGp(r) and b(p) ≡

∫ c

q
dGp(r). By Proposition 4 in Smith et al. (2021), Assumption

2 implies that
d

dp

(
a(p)

b(p)

)
> 0.

In our case, P2’s not having received a signal may also be due to P1 not having had the opportunity

to leave feedback, which occurs with probability 1− α. As a result, ∂ϕ(p, q)/∂p has the sign of

[(1− α) + αb(p)][(1− α) + αa′(p)]− [(1− α)p+ αa(p)][αb′(p)]

= (1− α)2 + (1− α)αa′(p) + αb(p)(1− α)− α(1− α)pb′(p) + α2 (b′(p)a(p)− b(p)a′(p))︸ ︷︷ ︸
>0

⩾ α(1− α)(a′(p)− pb′(p) + b(p)).

But

a′(p)− pb′(p) + b(p) =
∂

∂p

∫ c

q

r dGp(r)− p
∂

∂p

∫ c

q

dGp(r) +

∫ c

q

dGp(r)

=

∫ c

q

[
r
∂gp(r)

∂p
− p

∂gp(r)

∂p
+ gp(r)

]
dr =

∫ c

q

r(g1(q)− g0(q)) + g0(q) dr

=

∫ c

q

rg1(q) + (1− r)g0(q) dr =

∫ c

q

gr(r) dr > 0,
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thus proving the claim.

A.4 Proof of Lemma 5

Note that p 7→ qc(p) is defined as the minimum of a continuous function, (q 7→ ϕ(p, q)), on a compact

set. Therefore, the infimum is attained by Weierstrass’ Theorem, and continuity follows from Berge’s

Theorem (note that the constraint ϕ(p, q) ⩾ defines an upper-hemicontinuous correspondence, since

ϕ(p, q) is continuous). That qc(c) = c follows from Corollary 4, part 2.

Next, that there exists a p̂c ∈ (c, 1) such that qc(p) = 0 for all p ∈ [p̂c, 1] follows from the

definition of ϕ(p, q), since as p→ 1,

ϕ(p, 0) → (1− α) · 1 + α · 1
1− α+ 0

= 1.

Finally, that p 7→ qc(p) is strictly decreasing on [c, p̂c] follows directly from Lemma 4.

A.5 Proof of Lemma 6

The lower limit follows immediately since Λ(r | q) < 0 and q − c < 0 for sufficiently small q. The

upper limit obtains by noting that as q → 1, V1(q | q) achieves the upper bound on V1.

A.6 Proof of Lemma 7

For p ⩾ c, let q(p) < c be any solution to the equationW1 (ϕ(p, q), q) = V1(q | q). From Lemmas 2 and

4 and the chain rule, it follows that if q(p) < c, then q′(p) > 0. Therefore, p 7→ q̂(p) must be strictly

increasing. For sufficiently high p, W1(ϕ(p, q) | q) = V1(ϕ(p, q) | q), so the existence of p̄ follows

from Lemma 3. To see that q̂(c) < c, note that limq→c[W1(ϕ(p, q) | c)− V1(q | c)] = W1(p | c) > 0.

Lemma 6 combined with the Intermediate Value Theorem then implies there exists q′ ∈ (0, c) such

that W1(ϕ(p, q
′) | c) = V1(q

′ | c), which is the constraint defining q̂(c), and thus q̂(c) ≤ q′ < c.

That q̂(p) > 0 follows from the fact that W1(ϕ(p, 0) | 0) < 0 = V1(0 | 0) and the continuity of

q 7→W1(ϕ(p, q) | q).

A.7 Proof of Lemma 8

Follows from Lemma 5 and Lemma 7 part ii).
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A.8 Proof of Theorem 1

To establish the result, note first that following a signal leading P1 to hold a posterior q, their

disclosure decision hinges on the sign of V1(q | q) − V1(p
∅ | q). First, disclosure for q ≥ c follows

from Lemma 3. Lemma 2 then implies that if non-disclosure occurs in equilibrium, it must take a

interval form; D(p) = [q, c]. As such, if it exists, the MEE under any prior p is (essentially) unique,

as it is fully determined by its corresponding q(p). Finally, that q > 0 follows from the fact that

V1(r | 0) < 0 = V1(0 | 0) for r ≥ c, and thus by continuity revealing is strictly preferred to inducing

experimentation for sufficiently low q.

A.9 Proof of Theorem 2

We proceed in three cases:

1. If q̂(p) ∈ [0, qc(p)), then setting q = qc(p) defines the MEE. To see this, note first that the

equilibrium belief condition (5) is satisfied by definition. Next, we will verify the IC condition

(6), which in this case amounts to V1(c | q) ≥ V1(q | q) for all q ∈ [qc(p), c). But if q̂(p) ⩽ qc(p)

then ϕ(p, q̂(p)) ⩽ ϕ(p, qc(p)) = c by (4), and so for all q ∈ [qc(p), c),

V1(c | q) ≥ V1(ϕ(p, qc(p)) | q) =W1(ϕ(p, qc(p)) | q) ≥W1(ϕ(p, q̂(p)) | q) = 0 = V1(q | q),

with the first equality holding since V1(r | q) =W1(r | q) for all r ≥ c, and the second one holding

by Lemma 2. This verifies incentive compatibility. That q defines an EE is then immediate. To

verify that this is a MEE, note that were q < qc(p), then one would have ϕ(p, q) < c and thus no

experimentation by P2 could be supported.

2. If q̂(p) ∈ [qc(p), c), then set q = q̂(p). Again, (5) is satisfied immediately since q̂(p) ≥ qc(p). Next,

note that q = q̂(p) ≥ qc(p) implies that ϕ(p, q) ≥ ϕ(p, qc(p)), and so W1(ϕ(p, q̄) | q) = V1(ϕ(p, q̄) |

q) ≥ 0 for all q ∈ [q, c). Thus, (6) is verified. Furthermore, since (6) is binding, this must also be

a MEE (setting q < q̂(p) would violate (6)).

3. If q̂(p) ∈ [c, 1], then set q = c. In this case, full revelation is the only equilibrium: since q̂(p) ≥ c,

it must be that V1(q | q) ≥ V1(ϕ(p, q) | q) for all q < c.
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A.10 Proof of Lemma 9

For part i), note that by Lemma 4, q 7→ ϕ(p, q) is strictly increasing. Furthermore, from equation

(8), ϕ(p, q) is strictly decreasing in α. Since qc(p) solves ϕ(p, qc(p)) = c, this proves the first claim.

For the second part, note that from equation (8), limα→1 ϕ(p, q) = E(r | r ∈ [q, c]), and hence

limα→1 ϕ(p, c) = c, while limα→0 ϕ(p, q) = p, and hence limα→0 ϕ(p, c) = 0.

For part ii), note that ∂W1(ϕ(p, q) | q)/∂q > 0, as asserted in Lemma 7. Next, by Lemma 4,

q 7→ ϕ(p, q) is strictly increasing. Thus, the first part of the claim obtains provided that ∂W1(ϕ(p, q) |

q)/∂α > 0. To see that such is the case, note that ∂W1(r | q)/∂r > 0 as argued in Lemma 7, and

from equation (8), ϕ(p, q) is strictly decreasing in α. Finally,

∂W1(r | q)
∂α

= Λ(r | q)− (q − c) =

∫ 1

x(r,c)

(qz − c)fr(z) dz ≥ 0,

since qz > c for z > x(r, c). Hence

∂W1(ϕ(p, q) | q)
∂α

=
∂W1(r | q)

∂α
+
∂W1(r | q)

∂r

∂ϕ(r, q)

∂α
> 0.

To prove the second claim, suppose that for all p ∈ (c, 1), q̂(p) < c for all α ≥ 0. For α small enough,

ϕ(p, q̂(p)) > c and thus W1(ϕ(p, q̂(p)) | q) ≈ 2(q̂(p)− c) < 0, violating the indifference condition that

q̂(p) must satisfy. We can of course then conclude that qv(p) is also strictly increasing whenever

q̂(p) ≤ c, and is equal to c otherwise.

A.11 Proof of Proposition 1

For p ∈ (c, 1), let α̃(p) be that value of α such that qv(p) = qc(p). Such a value exists and lies in (0, 1)

by Lemmas 9 and 2; we have that qv(p) = c > qc(p) at α(p), and thus by continuity, α̃(p) > α(p).

Finally, α̃(p) < 1 since p̃ < 1 for all α ∈ (0, 1).

A.12 Proof of Proposition 2

Since q 7→ V1(r | q) is affine, standard arguments imply the problem faced by P1 under commitment

is to solve

v∗(p) = max
H∈∆([0,1])

∫ 1

0

V1(q) dH(q), (A.1)
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subject to the constraint that H is a mean-preserving contraction of Gp (Kamenica and Gentzkow,

2011). First, we prove that V1(q) is convex on [c, 1]. To see this, note that Lemma 1 implies that

V1(q | q) = supr∈[0,1] V1(r | q) for q ∈ [c, 1], and that q 7→ V1(r | q) is affine. The convexity of V1(q)

then follows from standard results in convex duality (Rockafellar, 1997, Theorem 13.2).

We may now apply (Dworczak and Martini, 2019, Theorem 1). In particular, consider the

function ψ defined by

ψ(q) =


V1(q) if px ⩾ q̄∗(p)

V1(c)
(

q−q∗(p)
c−q∗(p)

)
if px ∈ [q∗(p), q̄∗(p))

V1(q) if px < q∗(p),

and the distribution Hp : [0, 1] → [0, 1] defined by

Hp(q) =


Gp(q) if px ⩾ q̄∗(p)

Gp(c) + Iq≥c[Gp(q̄
∗(p))−Gp(q

∗(p))] if px ∈ [q∗(p), q̄∗(p))

Gp(q) if px < q∗(p).

which reveals q when either q ≥ q̄∗(p) or q ≤ q∗(p) and pools otherwise. It is readily verified that

ψ and H together satisfy conditions 3.1-3.3 of (Dworczak and Martini, 2019, Theorem 1), and thus

constitute a solution to the commitment problem. Finally note that since q 7→ Gp(q) is continuous

and strictly increasing, so too are q∗(p), q̄∗(p).

A.13 Proof of Corollary 3

Note that the constraint (13) is independent of p, whereas a simple application of the posterior

monotonicity property (Proposition 4 in Smith et al. (2021)) implies that for fixed q, q̄,Ep(q | q ∈

[q, q̄)) is strictly increasing in p. Thus, to keep Ep(q | q ∈ [q, q̄)) fixed, we must lower both q and q̄.

The final part of the corollary follows by noting that V (q) is strictly increasing and convex for q ≥ c

and strictly positive at c, and thus for all p ∈ [c, 1] the line segment intersecting the three points

(q∗(p), 0), (c, V1(c)), (q̄
∗(p) and V1(q̄

∗(p))) can only exist if q∗(p) 6= q̄∗(p), while the constraint that

Ep(q | q ∈ [q∗(p), q̄∗(p))) = c further implies that q∗(p) < c < q̄∗(p).
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Online Appendix
“(Pro)-Social Learning and Selective Disclosure”

Roland Bénabou, Nikhil Vellodi

A Heterogeneous Payoffs

We now extend the analysis to allow for heterogeneous payoffs, by introducing an idiosyn-

cratic component to utility. Besides adding realism this will serve to show that, under

general conditions on the form of this heterogeneity, disclosure is still polarized and pos-

itively biased, and that all equilibria are necessarily EE’s in which P2 strictly prefers to

disclose.

Let the payoff to agent t from receiving signal x now be xϵt, where each ϵt is drawn

from a distribution H, independently from x. Without loss of generality, we assume that

E(ϵ) = 1 and H has full support on [0,∞), with a density h that is everywhere positive.

We further assume that the realization of their own ϵt is observable to an agent prior to

their consumption decision –e.g., it represents the intensity of their need for such a product–

whereas the value xϵt (or, equivalently, x itself) is revealed only when consumption occurs.

Thus ϵt guides the experimentation decision at, but when at = 1 the relevant information for

the disclosure decision dt remains x itself, since ϵt is irrelevant to any successor. Formally,

consumption rules now map both from beliefs and shocks, i.e. at : [0, 1] × [0,∞) → {0, 1},

while disclosure rules remain as before.

The expected values, from P1’s perspective, of subsequent players’ consumptions are

now:

u(r | q) ≡
∫ ∞

c/r
(qϵ− c) dH(ϵ),

Λ(r | q) ≡ Eϵ,z(u (r
zϵ | qzϵ)) =

∫ 1

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z).
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We start with some basic properties of u and Λ.

Lemma A.1. 1. Both maps r 7→ u(r | q) and Λ(r | q) are strictly maximized at q.

2. Λ(r | q) ≥ (>)u(r | q) for all r ≤ (<)q.

Proof. Direct calculation verifies that ∂u
∂r = − c2

r2

( q
r − 1

)
h
(
c
r

)
,

which is equal to zero if and only if q = r. Since Λ(r | q) = Eϵ,z(u (r
zϵ | qzϵ)), point 1 is

verified. To verify point 2, note that

Λ(r | q)− u(r | q) =
∫ 1

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z)− u(r | q)

=

∫ x̂

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z) +

∫ 1

x̂

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z)︸ ︷︷ ︸
≥u(r|q)

−u(r | q) ≥ 0,

where the last inequality holds because z 7→ qzϵ − c is positive on the range [c/rz,∞) by

the MLRP, since by assumption r ≤ q.

Note that since V2(r | q) = u(r | q), Lemma A.1 implies that full disclosure by P2 is a

strictly dominant strategy. In Section 2, P2 was indifferent over posterior beliefs that induce

the same action by P3. Now, greater accuracy leads to a strictly lower chance of erroneous

consumption choices by P3 due to idiosyncratic shocks.

As before, this allows us to simplify player 1’s value function,

V1(r | q) = u(r | q) +
(
αC(r)Λ(r | q) + (1− α+ α (1− C(r))u(r | q)

)
, (A.1)

where

C(r) ≡
∫ ∞

c/r
dH(ϵ)

is the probability of consumption given a prior belief r, prior to the realization of ϵ.
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A.0.1 Selected Disclosure

In order to draw comparison to the results in Sections 4.2 and 4.3, we first adapt the

definition of experimentation equilibria in the most natural manner. Now, let

XE(σ) = {x ∈ N1(p) | a2(p∅, ϵ) > a2(p
x, ϵ) ∀ϵ ∈ [0,∞)}

denote the experimentation set for an equilibrium σ. First, we recover the result of polarized

disclosure.

Lemma A.2. (Polarized disclosure) Fix r ∈ (0, 1). Then, limq→0,1 [V1(q | q)− V1(r | q)] >

0.

Proof. For the lower limit, note that

u(r | 0) =
∫ ∞

c/r
−c dH(ϵ) < 0, Λ(r | 0) =

∫ 1

0

∫ ∞

c/rz
−c dH(ϵ)dFq(z) < 0,

whereas u(0 | 0) = Λ(0 | 0) = 0. Thus, by the expression for V1(r | q) given in (A.1),

V1(r | q) < 0 = V1(q | q). For the upper limit, note that

Λ(r | 1) =
∫ 1

0

∫ ∞

c
rz

(ϵ− c) dH(ϵ)dFq(z),

which is strictly increasing in r by the MLRP, since the integrand is strictly positive. Sim-

ilarly, r 7→ u(r | 1) is strictly increasing. Finally, r 7→ C(r) is also strictly increasing, and

thus so is r 7→ V1(r | 1). Therefore, the claim is verified.

Next, we demonstrate that for any prior p ∈ (0, 1), any posterior q ⩾ p (i.e. any signal

x ⩾ x̂) is disclosed by P1. Note that whereas in the baseline model (Lemma 3) it was

dominant for all posteriors q ≥ c to be disclosed, here this is no longer necessarily the case.

Lemma A.3. If px ⩾ p, then d1(x, p) = 1 is a strictly dominant strategy.

Proof. Suppose not, so that there exists an x > x̂ such that d1(x, p) = 0. Take the largest
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such x and let q = px. By construction, to satisfy the equilibrium belief condition (5) it

must be that p∅ < q. But then by Lemma A.1, u(p∅ | q) < u(q | q) and Λ(p∅ | q) < Λ(q | q),

while we also have C(p∅) < C(q) as r 7→ C(r) is strictly increasing. Combining, we have

that V1(p∅ | q) < V1(q | q).

Finally, we prove that non-disclosure of signals that convey marginally bad news (namely,

such that the posterior px is just below the prior p) is optimal. This result has no direct

analogue in the baseline model, insofar as non-disclosure now occurs at signals the revelation

of which would have induced consumption with strictly positive probability (c < px < p).

Furthermore, the result holds at all p ∈ (0, 1), thus demonstrating the existence of an EE

at all priors. This is again distinct from Theorem 2, which showed that for high enough

prior p, no EE existed.

Lemma A.4. (Positive selection) Let Ṽ1(q) ≡ V1(r | q). Then Ṽ ′
1(q) >

∂V1
∂q |r=q.

Proof. Since Ṽ1
′
(q) = ∂V1(r | q)/∂r|r=q + ∂V1(r | q)/∂q|r=q, the claim is equivalent to

proving that ∂V1(r | q)/∂r|p=q > 0. But

∂V1|(r | q)
∂r

|r=q =
∂u

∂r r=q︸ ︷︷ ︸
=0

+
c

q2
h

(
c

q

)[
Λ(q | q) + (1− C(q))u(q | q)

]

+ C

(
c

q

)[
∂Λ

∂r
|r=q︸ ︷︷ ︸

=0

+(1− C(q))
∂u

∂r
|r=q︸ ︷︷ ︸
=0

−C ′(q)u(q | q)
]

= Λ(q | q)− C

(
c

q

)
u(q | q) c

q2
h

(
c

q

)
> 0,

where the last inequality holds because C(q | q) < 1 and Λ(q | q) > u(q | q).

In particular, for x = x̂ − ε where ε is small, non-disclosure is optimal. Combining

Lemmas A.3 and A.4 with a continuity argument yields that non-disclosure takes place in

(at least) some interval [x̂− ε, x̂), and thus disclosure is positively biased. Furthermore, we

have:

Lemma A.5. Any equilibrium is an EE.
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Proof. Since d2 ≡ 1 is now a strictly dominant strategy, all equilibria are DE’s. To see that

all admit a non-empty experimentation region, note that Lemmas A.2 and A.3 imply that

in any equilibrium σ, for each p there exists a minimal posterior q(p) < p that is concealed.

Continuity of r 7→ V1(r | q) then ensures the existence of a δ > 0 such that posteriors in

the interval [q(p), q(p) + δ) are concealed. But for δ sufficiently small, q(p) + δ < p, and so

[q(p), q(p) + δ) ⊂ XE(σ).

B Biased Feedback – Cheap Talk

We now consider a natural variant on our baseline model by relaxing the requirement of

hard evidence disclosure and instead permitting arbitrary message reporting (cheap talk).

Such a variant is important for several reasons. First, in many applied settings, it might not

only be feasible but strategically optimal for consumers to mis-report their experiences. The

hard-evidence baseline abstracts from this possibility, thus providing a useful benchmark;

even when fake reviews are impossible, might their be scope for strategic disclosure? In

this section, we explore the extent of strategic information transmission when lying is both

feasible and costless. Second, by studying an alternative, well-established form of equilib-

rium information transmission, we make clear the features of strategic disclosure that are

invariant to the information sharing technology available to agents.

Specifically, we endow each agent with a rich messaging space M = [0, 1] × {∅} that

allows not only for full separation but also for agents to send a privileged message that pools

with non-arriving consumers, so that messaging rules (previously, disclosure rules) are now

mappings dt : X×[0, 1] → M.13 Again, full transparency is dominant for P2, so we focus on

P1’s messaging strategy. Let r∗(m) denote P2’s equilibrium belief upon observing message

m. Then the IC constraint (6) is replaced with the condition

d∗1(x, p) ∈ argmin
m∈supp(d∗1)

V1(r
∗(m) | px). (B.1)

13We focus on pure-strategy equilibria for simplicity, noting the usual implementation via uniform ran-
domization in cheap-talk games
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We focus on the case when α = 1. Combining various insights learned through the

baseline analysis, we can immediately conclude that all equilibria must admit a partitional

structure.

Proposition B.1. All equilibria are partitional. That is, for all r ∈ [0, 1] induced in

equilibrium, the set of q in which r is induced forms an interval in [0, 1]. Furthermore, there

must be at most finitely many such intervals on [c, 1].

Proof. We proceed with a series of lemmas.

Lemma B.1. All equilibria are partitional. Furthermore, there must be at most countably

infinitely many such intervals on [c, 1].

Proof. Lemma 1 tells us that r 7→ V1(r | q) is maximized at r = q, and that q 7→ V1(r | q)

is strictly increasing, so that argmaxr∈[0,1] V1(r | q) is strictly increasing in q. To prove the

final assertion, we argue that there can be no interval in [c, 1] on which separation can occur.

Suppose there were, and take the lowest such interval [q1, q2], q1 ≤ q2. If q2 < 1, then we

claim that types q ∈ (q2+ε] have an incentive to pool with q2. For since this was the lowest

separating interval, it must be that types q ∈ (q2 + ε] induce a belief q̂ = q2 + δ, δ > 0. By

Lemma 2, V1(q̂2 | q2+ ε) < V1(q2 | q2+ ε) ≈ V1(q2 | q2)+ εV ′
1(q2 | q2) for small enough ε > 0.

If q2 = 1, then we claim that q ∈ (q1 − ε] have an incentive to pool with q1 by analogous

reasoning.

Lemma B.2. There exists qmin < c such that full revelation is weakly dominant for all

types q ∈ [0, qmin).

Proof. qmin is the unique root of q 7→ V1(c | q) on [0, c], which is well-defined since the map

is continuous, strictly increasing with V1(c | 0) < 0 < V1(c | c).

It is thus without loss to associate an equilibrium with a lowest type q > 0 that forms

part of a pooling interval that itself induces experimentation. More specifically, combining

with Lemma B.1, an equilibrium can be described by a (possibly infinite) sequence (q ≡
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)q0 < q1 < q2 < . . . such that types in [qi, qi+1) pool and q̂ ≡ E(q | q ∈ [q, q1)) ≥ c. More

generally, we denote q̂i+1 = E(q | q ∈ [qi, qi+1)).

We next prove that the two first intervals [q, q1), [q1, q2) cannot be “too small” as then

types just below q would profitably deviate by pooling with [q1, q2) to induce q̂1.

Lemma B.3. For all q ∈ [qmin, c] there exists q̂1,min > c such that in any equilibrium,

q̂1 ≥ q̂1,min.

Proof. If not, then for any ε > 0 there exists an equilibrium with q̂1 ≤ c + ε. But since

by definition q̂ ≥ c, it must be that q > qmin for sufficiently small ε and by the sandwich

theorem, V1(q̂ | q) > 0, violating the IC constraint at q.

Lemma B.4. All equilibrium partitions essentially admit at most finitely many intervals

covering [c, 1].

Proof. We proceed constructively, via the following algorithm:

1. Fix a q ≥ qmin. Compute q̂max ≡ Ep(q | q ∈ [q, 1]).

(a) If V1(q̂max | q) > 0, then N∗(q) = 0 and q cannot be implemented in equilibrium.

(b) If not, then there exists a unique q1 > c such that V1(q̂1 | q) = 0, where q̂1 ≡

E(q | q ∈ [q, q1]). (Such a value exists by continuity and strict monotonicity of

r 7→ V1(r | q) on [q, 1], the IVT and because V1(c | q) > V1(c | qmin) = 0 by Lemma

B.2).

2. Compute V1(q̂1 | q1).

(a) If V1(1 | q1) ≥ V1(q̂1 | q1), then N∗(q) = 1.

(b) If not, then there exists a unique q2 > q1 such that V1(q̂2 | q1) = V1(q̂1 | q1), where

q̂2 is analogously defined, and q2 exists by the same reasoning as q1.

3. Repeat from step 2.
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Finally, we argue that this algorithm terminates in finitely many steps. Suppose not.

Then for all ε > 0, there exists an equilibrium and an interval [qi, qi+1) ⊂ [c, 1] such that

qi+1 − qi ≤ ε. Without loss, assume equality. Let q̂i+1 = E(q | q ∈ [qi, qi+1)). Then there

exists δ(ε) < ε such that q̂i+1 − qi = δ(ε). The Mean Value Theorem implies that

V1(q̂i | qi)− V1(qi | qi) = V ′
1(φ1 | qi)(q̂1 − qi),

for some φi ∈ (q̂i, qi). But since r 7→ V1(r | q) has a global maximum at q, we know that

V1(qi + δ(ε) | qi)− V1(qi | qi) ≈
∂2V1
∂r2

(qi | qi)δ(ε)2.

Combining these terms implies that qi − q̂i = κδ(ε), for some κ > 0, and so q̂i+1 − q̂i =

(q̂i+1 − qi) + (qi − q̂i) = κiδ(ε), for some κi > 0. Now, since ε > 0, there exists a finite

I > 0 such that qi−I = q (if not, then Lemma B.3) and thus a simple inductive argument

implies that q̂1 − q̂ = κi−Iδ(ε), for some κi−I > 0. Taking ε (and thus δ(ε)) sufficiently

small violates Lemma B.3.

This characterization is in stark contrast to Proposition 1, as well as the subsequent

characterization under commitment (Proposition 2), both of which exhibit a “separate-

pool-separate” reporting structure. The result derives from the stark nature of preference

misalignment between P1 and P2; for q ≥ c, there is no misalignment at all and thus such

types have a preference to reveal themselves fully, whereas in an interval below c, all types

have a preference to induce c. This latter preference toward biasing “upward” leads to

a ripple effect for higher types, whereby to preserve incentives, information transmission

must necessarily be coarse. Put differently, we see here an alternative manifestation of the

accuracy-experimentation trade-off identified in Section 4; in order to foster experimentation

by P2, equilibrium must necessarily involve consumption errors by P3.

The proof of Proposition B.1 is constructive. First, we identify a lower-bound on the
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Figure 5: Cheap-Talk Equilibria: Construction

r

q̂1q q1 q̂2 q̂3q2

W1(· | q)

W1(· | q2)

W1(· | q3)

PoolPoolPool

An equilibrium with three pooling intervals covering [c, 1]. Virtual value function W1(r | q). For r ≥ c,
W1(· | q) = V1(· | q) (solid black lines). For r ≥ c, V1(· | q) = 0.

degree of experimentation possible; there exists a qmin such that V1(c | qmin), thus any type

lower prefers to terminate experimentation, regardless of the continuation belief r. Each

equilibrium is essentially determined by its associated q ∈ [qmin, c], that is the lowest type

whose message induces experimentation.

Corollary B.1. For each q ∈ [qmin, c] there exists a unique equilibrium partition on [q, 1]

induced by d∗1.
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